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Abstract

Distributed computing enhances service response time and energy efficiency by utilizing diverse
computing facilities for compute-intensive and delay-sensitive services. To optimize throughput
and response time, "Computing-Aware Traffic Steering" (CATS) selects servers and directs traffic
based on compute capabilities and resources, rather than static dispatch or connectivity metrics
alone. This document outlines the problem statement and scenarios for CATS within a single
domain, and drives requirements for the CATS framework.
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1. Introduction

Computing resources are increasingly being deployed, particularly edge computing resources, to
support services that require low latency, high reliability, and dynamic resource scaling.

Diversified service demands have brought key challenges to service deployment and traffic
scheduling. A single-site service instance often lacks sufficient capacity to guarantee the required
quality of service, especially during peak hours when local computing resources may fail to
handle all incoming requests, leading to longer response times or even request drops. Regular
capacity expansion of a single site is often neither practical nor economical. Additionally, relying
solely on computing capabilities enhancements of client devices cannot meet the computing
requirements of all applications.

It is necessary to deploy services across multiple sites (either edge or central nodes) to improve
availability and scalability. To this end, traffic should be steered to the "best" service instance
based on factors like current computing load, where "best" is largely determined by application
requirements.

However, existing routing schemes and traffic engineering methods often fall short of
addressing these challenges. The underlying networking infrastructures that include computing
resources usually provide relatively static service dispatching or depend solely on connectivity
metrics for traffic steering, failing to account for compute capabilities and resource status, which
are critical for meeting the quality requirements of modern services.

To tackle this issue, the choice of service instance and network resources should further
consider compute-oriented metrics beyond connectivity metrics. The process of selecting service
instances and locations based on metrics that are oriented towards compute capabilities and
resources, and of directing traffic to them on chosen network resources is called "Computing-
Aware Traffic Steering" (CATS). It should be noted that CATS is not limited to edge computing
scenarios, however, Section 3 of this document will focus on edge computing scenarios for
problem statement.

This document describes sample usage scenarios that drive CATS requirements and will help to
identify candidate solution architectures and approaches. The use cases and requirements
within this document are limited to single-domain scenarios.
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2. Definition of Terms

This document uses the terms defined in [I-D.ietf-cats-framework], including service site, service
instance, CATS service identifier(CS-ID), flow, client.

Edge Computing: Edge computing is a computing pattern that moves computing
infrastructures, i.e, servers, away from centralized data centers and instead places it close to
the end users for low latency communication.

Even though this document is not a protocol specification, it makes use of upper case key words
to define requirements unambiguously.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. Problem Statement

3.1. Multi-deployment of Edge Service Sites and Service

In edge computing environments, service instances typically adopt a multi-site deployment
model. It should be clarified that specific service instance deployment strategies are not within
the scope of CATS. However, there is a close correlation between service instance deployment
and traffic scheduling, especially in the definition and selection of core metrics such as
computing capabilities and resources. This dual applicability allows a common set of metrics to
inform both traffic steering and higher-level service management decisions, without requiring
CATS to define orchestration behavior.

Therefore, to present a clear and comprehensive problem statement, it is necessary to first
introduce the relevant considerations for multi-edge service site deployment. This premise can
better support the subsequent elaboration on CATS requirements and solutions.

Before deploying edge service sites, the following factors need to be considered:

* Geographic location: Including the number of users, differences in service types, and the
number of connection requests from users. For edge service sites located in densely
populated areas with a large number of users and service requests, more service replicas
can be deployed compared to other areas.

* The type, scale, and usage frequency of required computing resources. For example,
distributed Al inference services require the deployment of more GPU resources.

* The status of network resources associated with computing resources, such as network
topology, network access methods, connectivity, link bandwidth, and path protection or
redundancy information.
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To improve the overall quality of service, during the service deployment phase, it is necessary to
analyze the approximate network and computing resource requirements of the service,
comprehensively form a reasonable network and computing resource topology, and clarify the
location, overall distribution, and relative position of computing resources in the network
topology. This process relies on standardized consensus on computing and network resources
related metrics, which is also the point most closely related to the problem space addressed by
CATS traffic scheduling.

3.2. Traffic Steering among Edges Service Sites and Service Instances

This section describes how existing edge computing systems do not provide all of the support
needed for real-time or near-real-time services, and how it is necessary to steer traffic to
different sites considering changes in client distribution, different time slots, events, server
loads, network capabilities, and some other factors which might not be directly measured, i.e.,
properties of edge service sites(e.g., geographical location), etc.

It's assumed that service instances are multi-site deployed, and they are reachable through a
network infrastructure.

When a client issues a service request for a required service, the request is steered to one of the
available service instances. Each service instance may act as a client towards another service,
thereby seeing its own outbound traffic steered to a suitable service instance of the requested
service and so on, achieving service composition and chaining as a result.

The aforementioned selection of a service instance from the set of candidates is performed using
traffic steering methods.

In edge computing, traffic is steered to an edge service site that is "closest" or to one of a few
"close" sites using load-balancing. Such traffic steering can be initiated either by the application
layer or by the network layer: the application layer may actively query for the optimal node and
guide traffic using mechanisms such as the ALTO protocol[RFC7285], while the network layer
may leverage Anycast routing[RFC4786], where routing systems automatically distribute traffic
according to routing tables in an application-transparent manner. However, regardless of
whether the steering is performed by the application or the network, the core criteria for
selecting "closest" or "close" sites often rely solely on communication metrics (such as physical
distance, hop count, or network latency). This decision logic can easily lead to suboptimal
choices, meaning that the "closest" site is not always the "best" one. This is because the
computing resources and states of edge service sites can change in real time:

* The closest site may not have sufficient resources.
* The closest site may not have the specific computing resources required.

To address these issues, enhancements to traffic steering mechanisms are needed to direct traffic
to sites that can adequately support the requested services. Steering decision may take into
account more complex and possibly dynamic metric information, such as load of service
instances, latency experienced or similar, for selection of a more suitable service instance.
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It is important to note that clients may move. This means that the service instance that was
"best" at one moment might no longer be best when a new service request is issued. This creates
a (physical) dynamicity that will need to be catered for in addition to the changes in server and
network load. From a routing perspective, CATS is an application-transparent routing
mechanism that can provide scheduling for both stateful and stateless services. However, in
scenarios where clients move and the service is stateful, CATS requires the application to
explicitly indicate whether it allows the routing system to enable CATS functionality. Otherwise,
mid-session scheduling triggered by CATS may cause application context inconsistency among
service sites or even service interruption.

Figure 1 shows a common way to deploy edge service sites in the metro. Edge service sites are
connected with Provider Edges(PEs). There is an edge data center for metro area which has high
computing resource and provides the service to more User Equipments(UEs) (UE1 to UEn) at the
working time. Because more office buildings are in the metro area. And there are also some
remote edge service sites which have limited computing resource and provide the service to the
UEs (UEa, UED) close to them.

Applications to meet service demands could be deployed in both the edge data center in metro
area and the remote edge service sites. In this case, the service request and the resource are
matched well. Some potential traffic steering may be needed just for special service request or
some small scheduling demand.
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| +-——----———- + | | +-——+ +-— | Edge |
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High computing resource Limited computing resource
and more UE at metro area and less UE at remote area

Figure 1: Common Deployment of Edge Service Sites

Figure 2 shows that during non-working hours, for example at weekend or daily night, more UEs
move to the remote area that are close to their house or for some weekend events. So there will
be more service request at remote but with limited computing resource, while the rich
computing resource might not be used with less UE in the metro area. It is possible for many
people to request services at the remote area, but with the limited computing resource,
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moreover, as the people move from the metro area to the remote area, the edge service sites that
serve common services will also change, so it may be necessary to steer some traffic back to the
metro data center.
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| |Edge server| | | Poooooooo00s | PE | |
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| +----------- + || I I
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|| 5 < [ I Foommmmmo-o-oo + |
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|Edge data center|-+ Steering traffic +--| Site 2 |-+
S + tom—m—m—m—m = +
High computing resource Limited computing resource
and less UE at metro area and more UE at remote area

Figure 2: Steering Traffic among Edge Service Sites

There will also be the common variable of network and computing resources, for someone who
is not moving but experiences poor latency sometime. Because of other UEs moving, a large
number of request for temporary events such as vocal concert, shopping festival and so on, and
there will also be the normal change of the network and computing resource status. So for some
fixed UEs, it is also expected to steer the traffic to appropriate sites dynamically.

Those problems indicate that traffic needs to be steered among different edge service sites,
because of the mobility of the UE and the common variable of network and computing
resources. Moreover, some use cases in the following section require both low latency and high
computing resource usage or specific computing hardware capabilities (such as local GPU);
hence joint optimization of network and computing resource is needed to guarantee the Quality
of Experience (QoE).

4. Use Cases

4.1. Overview of Use Cases

The five use cases outlined in the sections below serve as examples to show the need for CATS. In
particular, while these use cases may be solved in a simplistic way with current tools, CATS adds
the ability to make dynamic selection between services sites and service instances to take
account of network capabilities and status, compute capabilities and current load, and to
achieve load-balancing.
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Considering that these use cases are enough to derive common requirements, this document
only includes these five use cases in the main body, although there have been more similar use
cases proposed in CATS working group (e.g., [[-D.dcn-cats-req-service-segmentation]). The
applicability of CATS may be further extended in future use cases brought to the working group
and possibly arising from work in other standards bodies such as ETSI and 3GPP, but it is
believed that the five use cases presented here are sufficient to drive the requirements
expressed in this document and future applicability.

If new use cases do raise additional requirements they will need to be documented separately
and might necessitate modifications to the CATS framework [I-D.ietf-cats-framework].

Further potential use cases are attached in Appendix A of this document.

4.2. Example 1: Computing-aware AR or VR

Cloud Virtual Reality (VR) and Augmented Reality (AR) introduce the concept of cloud computing
to the rendering of audiovisual assets in such applications. Here, the edge cloud helps encode/
decode and render content. The edge cloud refers to cloud computing located at the edge of the
network to be closer to users and applications. The client device usually only uploads posture or
control information to the edge cloud and then VR/AR contents are rendered in the edge cloud.
The video and audio outputs generated from the edge cloud are encoded, compressed, and
transmitted back to the client device or further transmitted to central data center via high
bandwidth networks.

A Cloud VR service is delay-sensitive and influenced by both network and computing resources.
Therefore, the edge service site which executes the service has to be carefully selected to make
sure it has sufficient computing resource and good network condition to guarantee the end-to-
end service delay. For example, for an entry-level cloud VR (panoramic 8K 2D video) with 110-
degree Field of View (FOV) transmission, the typical network requirements are bandwidth
40Mbps, 20ms for motion-to-photon latency, packet loss rate is 2.4E-5; the typical computing
requirements are 8K H.265 real-time decoding, 2K H.264 real-time encoding. Further, the 20ms
latency can be categorised as:

1. Sensor sampling delay(client), which is considered imperceptible by users is less than 1.5ms
including an extra 0.5ms for digitalization and client device processing.

2. Display refresh delay(client), which take 7.9ms based on the 144Hz display refreshing rate
and 1ms extra delay to light up.

3. Image/frame rendering delay(server), which could be reduced to 5.5ms.

4. Round-trip network delay: The remaining latency budget is 5.1 ms, calculated as
20-1.5-5.5-7.9 = 5.1m:s.

So the budgets for server(computing) delay and network delay are almost equivalent, which
make sense to consider both of the delay for computing and network. And it could not meet the
total delay requirements or find the best choice by either optimizing the network or computing
resource.
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Based on the analysis, here are some further assumption as Figure 3 shows, the client could
request any service instance among 3 edge service sites. The delay of client could be same, and
the differences of edge service sites and corresponding network path have different delays:

» Edge service site 1: The computing delay=4ms based on a light load, and the corresponding
network delay=9ms based on a heavy traffic.

* Edge service site 2: The computing delay=10ms based on a heavy load, and the
corresponding network delay=4ms based on a light traffic.

* Edge service site 3: The edge service site 3's computing delay=5ms based on a normal load,
and the corresponding network delay=5ms based on a normal traffic.

In this case, the optimal network and computing total delay can not be achieved if choosing the
resource only based on either of computing or network status:

* The edge service site based on the best computing delay it will be the edge service site 1, the
end-to-end (E2E) delay=22.4ms.

* The edge service site based on the best network delay it will be the edge service site 2, the
E2E delay=23.4ms.

* The edge service site based on both of the status it will be the edge site 3, the E2E
delay=19.4m:s.

So, the best choice to ensure the E2E delay is edge service site 3, which is 19.4ms and is less than
20ms. The differences of the E2E delay is only 3~4ms among the three, but some of them will
meet the application demand while the others don't.

In conclusion, AR/VR clients are increasingly produced as low-end devices with reduced
compute capability, while the AR/VR services required are ever more complex needing more
computation. It makes sense, therefore, to perform at least some of the computation on
specialized servers across the network. As the computation work gets larger, it may make sense
to break it into components that are processed at different and more specialized sites. All of the
computation must, however, be performed in a way that enables the resulting streams to be
delivered in a timely way. Thus, it is necessary to select service sites that can cooperate, can
perform the correct work, are not already overloaded, and have sufficiently good network
connectivity with the client. This needs to be coordinated through a CATS system.
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Figure 3: Computing-Aware AR or VR

Furthermore, specific techniques may be employed to divide the overall rendering into base
assets that are common across a number of clients participating in the service, while the client-
specific input data is being utilized to render additional assets. When being delivered to the
client, those two assets are being combined into the overall content being consumed by the
client. The requirements for sending the client input data as well as the requests for the base
assets may be different in terms of which service instances may serve the request, where base
assets may be served from any nearby service instance (since those base assets may be served
without requiring cross-request state being maintained), while the client-specific input data is
being processed by a stateful service instance that changes, if at all, only slowly over time due to
the stickiness of the service that is being created by the client-specific data. Other splits of
rendering and input tasks can be found in [TR22.874] for further reading.

When it comes to the service instances themselves, those may be instantiated on-demand, e.g.,
driven by network or client demand metrics, while resources may also be released, e.g., after an
idle timeout, to free up resources for other services. Depending on the utilized node
technologies, the lifetime of such "function as a service" may range from many minutes down to
millisecond scale. Therefore, computing resources across participating edges exhibit a
distributed (in terms of locations) as well as dynamic (in terms of resource availability) nature.
In order to achieve a satisfying service quality to end users, a service request will need to be sent
to and served by an edge with sufficient computing resource and a good network path.
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4.3. Example 2: Computing-aware Intelligent Transportation

Urban intelligent transportation relies on a large number of high-quality video capture devices
and light detection and ranging (LiDAR) devices, whose data needs to be processed at edge
service sites (e.g., pedestrian flow statistics, vehicle tracking). This imposes stringent
requirements on the computing capabilities of edge service sites and network performance,
including high throughput for concurrent video stream decoding and Al inference, as well as low
latency for real-time decision-making. CATS can address the issue by coordinating network and
computing resources.

In auxiliary driving scenarios (for example, "Extended Electronic Horizon" [HORITA]), edge
service sites collect road and traffic data via V2X to address blind-spot and collision risks, and
provide real-time warnings and manoeuvre guidance. Requests are typically sent preferentially
to the closest edge node. However, if the closest node becomes overloaded, it may lead to
response delays and safety risks, which requires CATS to perform traffic steering.

Specifically, delay-insensitive services (e.g., in-vehicle entertainment) can be offloaded via CATS
to edge service sites with lighter loads (even if they are farther away), while delay-sensitive
assisted driving services are preferentially processed at local service sites. As mentioned in the
problem statement section, CATS is an application-transparent network-layer solution. Unlike
ALTO[RFC7285], it enables coordinated scheduling of network and computing resources without
requiring application modifications. For moving vehicles, CATS supports smooth and proactive
context migration between edge nodes, provided that the application allows it, to maintain
service continuity. In addition, vehicle speed is a key factor: faster movement requires higher
frequency of metric updates (to be detailed in the requirements section) to ensure that CATS
steering decisions remain valid as vehicles switch services among base stations or edge service
sites.

In video recognition scenarios, traffic surges (e.g., during rush hours or weekends) can easily
overload the closest edge service sites. CATS addresses this scalability challenge by steering
excess service requests to other appropriate sites, ensuring that processing capacity matches
user demand.

4.4. Example 3: Computing-aware Digital Twin

A number of industry associations, such as the Industrial Digital Twin Association or the Digital
Twin Consortium (https://www.digitaltwinconsortium.org/), have been founded to promote the
concept of Digital Twin (DT) for a number of use case areas, such as smart cities, transportation,
industrial control, among others. The core concept of the DT is the "administrative shell"
[Industry4.0], which serves as a digital representation of the information and technical
functionality pertaining to the "assets" (such as an industrial machinery, a transportation vehicle,
an object in a smart city or others) that is intended to be managed, controlled, and actuated.

As an example for industrial control, the programmable logic controller (PLC) may be
virtualized and the functionality aggregated across a number of physical assets into a single
administrative shell for the purpose of managing those assets. PL.Cs may be virtualized in order
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to move the PLC capabilities from the physical assets to the edge cloud. Several PLC instances
may exist to enable load balancing and fail-over capabilities, while also enabling physical
mobility of the asset and the connection to a suitable "nearby” PLC instance. With this, traffic
dynamicity may be similar to that observed in the connected car scenario in the previous
subsection. Crucial here is high availability and bounded latency since a failure of the (overall)
PLC functionality may lead to a production line stop, while boundary violations of the latency
may lead to loosing synchronization with other processes and, ultimately, to production faults,
tool failures or similar.

Particular attention in Digital Twin scenarios is given to the problem of data storage. Here,
decentralization, not only driven by the scenario (such as outlined in the connected car scenario
for cases of localized reasoning over data originating from driving vehicles) but also through
proposed platform solutions, such as those in [GAIA-X], plays an important role. With
decentralization, endpoint relations between client and (storage) service instances may
frequently change as a result.

In this use case, CATS is required for selecting the optimal PLC instance and storage node,
ensuring low latency and reliability for data processing in industrial scenarios, as well as low
latency for data reading/writing during twin control processes.

4.5. Example 4: Computing-aware SD-WAN

Software-defined Wide-area Network (SD-WAN) is an overlay connectivity service that optimizes
the transport of IP packets over one or more underlay connectivity services by recognizing
applications and determining forwarding behavior through the application of policies [MEF70.2].
SD-WAN can be deployed by both service providers and enterprises to support connectivity
across branch sites, data centers, and cloud environments. Applications or services may be
deployed at multiple locations to achieve performance, resiliency, or cost objectives.

In current SD-WAN deployments, forwarding decisions are primarily based on network-related
metrics such as available bandwidth, latency, packet loss, or path availability. However, these
decisions typically lack visibility into the computing resources available at the destination sites,
such as CPU or GPU utilization, memory pressure, or other composite cost metrics.

CATS metrics can complement existing SD-WAN network metrics by providing information
about the availability and condition of computing resources associated with service instances at
edge or cloud sites. Such metrics may be consumed by a centralized SD-WAN controller when
deriving policies or computing preferred paths, and/or by SD-WAN edge devices to make
distributed, real-time traffic steering decisions among already-deployed service instances. In
both cases, the goal is to enable application traffic to be steered towards service instances and
sites that best satisfy application requirements by jointly considering network and computing
conditions.
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For the scenario of enterprises deploying applications in the cloud, SD-WAN provides enterprises
with centralized control over Customer-Premises Equipments(CPEs) in branch offices and the
cloudified CPEs(vCPEs) in the clouds. The CPEs connect the clients in branch offices and the
application servers in clouds. The same application server in different clouds is called an
application instance. Different application instances have different computing resource.

SD-WAN is aware of the computing resource of applications deployed in the clouds by vCPEs,
and selects the application instance for the client to visit according to computing power and the
network state of WAN.

Additionally, in order to provide cost-effective solutions, the SD-WAN may also consider cost, e.g.,
in terms of energy prices incurred or energy source used, when selecting a specific application
instance over another. For this, suitable metric information would need to be exposed, e.g., by
the cloud provider, in terms of utilized energy or incurred energy costs per computing resource.

Figure 4 below illustrates Computing-aware SD-WAN for Enterprise Cloudification.

Fomm e +
R et + ommmmmmm - + | Cloud1 |
|ClientT| [---—mm-- | WANT  |------ | VCPE1 APP1 |
- + / F--mmm - + Fomm e +
it + e +
|Client2| ------ | CPE |
+--————- + +--————- + Fomm e +
oo + \ Fommmm—-m- + | Cloud2 |
|Client3| \--mmme - | WAN2  |------ | VCPE2 APP1 |
e + F--mmm - + e e +

Figure 4: Illustration of Computing-aware SD-WAN for Enterprise Cloudification

The current computing load status of the application APP1 in cloud1 and cloud2 is as follows:
each application uses 6 vCPUs. The load of application in cloud1 is 50%. The load of application
in cloud2 is 20%. The computing resource of APP1 are collected by vCPE1 and vCPE2
respectively. Client1 and Client2 are visiting APP1 in cloud1. WAN1 and WAN2 have the same
network states. Considering lightly loaded application SD-WAN selects APP1 in cloud2 for the
client3 in branch office. The traffic of client3 follows the path: Client3 -> CPE -> WAN2 -> Cloud2
vCPE1 -> Cloud2 APP1

4.6. Example 5: Computing-aware Distributed Al Training and Inference

Artificial Intelligence (AI) large model refers to models that are characterized by their large size,
high complexity, and high computational requirements. Al large models have become
increasingly important in various fields, such as natural language processing for text
classification, computer vision for image classification and object detection, and speech
recognition.
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Al large model contains two key phases: training and inference. Training refers to the process of
developing an Al model by feeding it with large amounts of data and optimizing it to learn and
improve its performance. On the other hand, inference is the process of using the trained Al
model to make predictions or decisions based on new input data.

4.6.1. Distributed AI Inference

With the fast development of Al large language models, more lightweight models can be
deployed at edge service sites. Figure 5 shows the potential deployment of this case.

Al inference contains two major steps, prefilling and decoding. Prefilling processes a user's
prompt to generate the first token of the response in one step. Following it, decoding
sequentially generates subsequent tokens step-by-step until the termination token. These stages
consume much computing resource. Important metrics for Al inference are processor cores
which transform prompts to tokens, and memory resources which are used to store key-values
and cache tokens. The generation and processing of tokens indicates the service capability of an
Al inference system. Single site deployment of the prefilling and decoding might not provide
enough resources when there are many clients sending requests (prompts) to access Al
inference service.

More generally, we also see the use of cost information, specifically on the cost for energy
expended on Al inferencing of the overall provided Al-based service, as a possible criteria for
steering traffic. Here, we envision (Al) service tiers being exposed to end users, allowing to
prioritize, e.g., 'greener energy costs' as a key criteria for service fulfilment. For this, the system
would employ metric information on, e.g., utilized energy mix at the Al inference sites and costs
for energy to prioritize a 'greener’ site over another, while providing similar response times.

e ittt T TP P +
| +-—--mmm - I R Tt I T + |
| Edge (. Edge I Edge (.
| | 4= L I B ittt + | +---------- + | I
| | | Prefill | | | | Prefill | | | | Prefill | | |
|| s I I I +
| e o e w0
| | | Decode | | | | Decode | | | | Decode | | |
| ] s I L +
[ + - +  mmmmmmm - + |
Fommmmmm - o o +
| Prompt | Prompt
I I
e T + e +
| Client_1 | . | Client_2 |
Fommmmmm— - + Fommmmmm - +

Figure 5: Illustration of Computing-aware Al large model inference
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4.6.2. Distributed Al Training

Although large language models are nowadays confined to be trained with very large centers
with computational, often GPU-based, resources, platforms for federated or distributed training
are being positioned, specifically when employing edge computing resources [Cost-Aware-
Federated-Learning-in-Mobile-Edge-Networks].

While those approaches apply their own (collective) communication approach to steer the
training and gradient data towards the various (often edge) computing sites, we also see a case
for CATS traffic steering here. For this, the training clusters themselves may be multi-site, i.e.,
combining resources from more than one site, but acting as service instances in a CATS sense,
i.e,, providing the respective training round as a service to the overall distributed/federated
learning platform with the CATS system responsible for selecting service instances and steering
traffic to them.

One (cluster) site can be selected over another based on compute, network but also cost metrics,
or a combination thereof. For instance, training may be constrained based on the network
resources to ensure timely delivery of the required training and gradient information to the
cluster site, while also computational load may be considered, particularly when the cluster sites
are multi-homed, thus hosting more than one application and therefore become (temporarily)
overloaded. But equally to our inferencing use case in the previous section, the overall training
service may also be constrained by cost, specifically energy aspects, e.g., when positioning the
service utilizing the trained model is advertising its 'green’ credentials to the end users. For this,
costs based on energy pricing (over time) as well as the energy mix may be considered. One
could foresee, for instance, the coupling of surplus energy in renewable energy resources to a
cost metric upon which traffic is steered preferably to those cluster sites that are merely
consuming surplus and not grid energy.

Storage is also necessary for performing distributed/federated learning due to several key
reasons. Firstly, it is needed to store model checkpoints produced throughout the training
process, allowing for progress tracking and recovery in case of interruptions. Additionally,
storage is used to keep samples of the dataset used to train the model, which often come from
distributed sensors such as cameras, microphones, etc. Furthermore, storage is required to hold
the models themselves, which can be very large and complex. Knowing the storage performance
metrics is also important. For instance, understanding the I/O transfer rate of the storage helps
in determining the latency of accessing data from disk. Additionally, knowing the size of the
storage is relevant to understand how many model checkpoints can be stored or the maximum
size of the model that can be locally stored.

5. Requirements

In the following, we outline the requirements for the CATS system to overcome the observed
problems in the realization of the use cases above.
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5.1. Support Dynamic and Effective Selection among Multiple Service
Instances

The basic requirement of CATS is to support the dynamic access to different service instances
residing in multiple computing sites and then being aware of their status, which is also the
fundamental model to enable the traffic steering and to further optimize the network and
computing services. A specific service is identified by a CATS service identifier (CS-ID). All
instances of a specific service use the same CS-ID no matter at which edge service site they are
located. The CS-ID is unique for the service so that it unambiguously identifies the service. The
mapping of this CS-ID to a network locator is basic to steer traffic to any of the service instances
deployed in various edge service sites.

Moreover, according to CATS use cases, some applications require E2E low latency, which
warrants a quick mapping of the service identifier to the network locator. This leads to naturally
the in-band methods, involving the consideration of using metrics that are oriented towards
compute capabilities and resources, and their correlation with services. Therefore, a desirable
system:

R1: MUST provide a dynamic discovery and resolution method for mapping CS-ID to one or
more current service instance addresses, based on up-to-date system state assuming the CS-
ID is valid.

R2: MUST provide a method to dynamically assess the availability of service instances, based
on up-to-date status metrics (e.g., health, load, reachability).

Note: The term "up-to-date" herein refers to the latest metric information collected by the system
in accordance with the preset metric update cycle. The principle for setting the cycle is generally
pre-determined by the network. For example, based on historical statistical data, a relatively
appropriate update cycle (either second-level or millisecond-level) is selected for a specific type
or certain types of services.

5.2. Support Agreement on Metric Representation and Definition

Computing metrics can have many different semantics, particularly for being service-specific.
Even the notion of a "computing load" metric could be represented in many different ways, as
with percentile-quantified metrics across various categories (e.g., latency, throughput). Such
representation may entail information on the semantics of the metric or it may be purely one or
more semantic-free numerals. Agreement of the chosen representation among all service and
network elements participating in the service instance selection decision is important.
Therefore, a desirable system

R3: The implementations MUST agree on using metrics that are oriented towards compute
capabilities and resources and their representation among service instances in the
participating edges, at both design time and runtime.
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To better understand the meaning of different metrics and to better support appropriate use of
metrics,

R4: An information model of the compute and network resources MUST be defined. Such a
model MUST characterize how metrics are abstracted out from the compute and network
resources. We refer to this information model as the Resource Model.

R5: The Resource Model MUST be implementable in an interoperable manner. That is, metrics
generated by this resource model MUST be understood and interoperable across independent
CATS implementations.

R6: It MUST be possible to implement the Resource Model in a scalable manner. That is, the
Resource Model MUST be capable of scaling in memory, energy, and processing no worse than
linearly with an increase in the amount of CATS metrics and CATS service instances it
supports.

We recognize that different network nodes, e.g., routers, switches, etc., may have diversified
capabilities even in the same routing domain, let alone in different administrative domains and
from different vendors. Therefore, to work properly in a CATS system,

R7: CATS systems MUST support staleness handling for CATS metrics and provide indications
of when metrics should be refreshed, so that CATS components can know if a metric value is
valid or not.

R8: All metric information used in CATS MUST be produced and encoded in a standardised
format that is understood by all participating CATS components. For metrics that CATS
components do not understand or support, CATS components will ignore them.

R9: CATS components SHOULD support a mechanism to advertise or negotiate supported
metric types and encodings to ensure compatibility across implementations.

R10: The computation and use of metrics in CATS MUST be designed to avoid introducing
routing loops or path oscillations when metrics are distributed and used for path selection.

Compute metrics can change rapidly, which may lead to path oscillation if metrics are updated
too frequently or become stale if updated too infrequently. R10 ensures that CATS components
can negotiate metric types for consistent interpretation, while R11 requires that metrics be used
in a way that avoids routing loops and path instability. Together, they balance responsiveness
with stability.

5.3. Use of CATS Metrics

Network path costs in the current routing system usually do not change very frequently.
Network traffic engineering metrics (such as available bandwidth) may change more frequently
as traffic demands fluctuate, but distribution of these changes is normally damped so that only
significant changes cause routing protocol messages.
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However, metrics that are oriented towards compute capabilities and resources in general can
be highly dynamic, e.g., changing rapidly with the number of sessions, the CPU/GPU utilization
and the memory consumption, etc. Service providers must determine at what interval or based
on what events such information needs to be distributed. Overly frequent distribution with
more accurate synchronization may result in unnecessary overhead in terms of signaling.

Moreover, depending on the service related decision logic, one or more metrics need to be
conveyed in a CATS domain (that is, between the clients, services, decision-making points, and
traffic steering elements cooperating to perform CATS function). The problem to be addressed
here may be the frequency of such conveyance, and which CATS component is the decision
maker for the service instance selection should also be considered. Thereby, choosing
appropriate protocols for conveying CATS metrics is important. While existing routing protocols
may serve as a baseline for signaling metrics, for example, BGP extensions[RFC4760] and
GRASP[RFC8990]. These routing protocols may be more suitable for distributed systems.
Considering about some centralized approaches to select CATS service instances, other means to
convey the metrics can equally be chosen and even be realized, for example, leveraging restful
API for publication of CATS metrics to a centralized decision maker. Specifically, a desirable
system,

R11: MUST provide mechanisms for metric collection, including specifying the responsible
entity for collection.

Collecting metrics from all of the services instances may incur much overhead for decision
makers. Hierarchical aggregation helps reduce this burden by consolidating metrics at
intermediate nodes, providing a more scalable and efficient view of resource conditions.

CATS components do not need to be aware of how metrics are collected behind the aggregator.
The decision point may not be directly connected with service instances or metric collectors,
therefore,

R12: MUST provide mechanisms to distribute the metrics.

There may be various update frequencies for different computing metrics. Some of the metrics
may be more dynamic, while others are relatively static. Accordingly, different distribution
methods may need to be chosen with respect to different update frequencies of different
metrics. Therefore a system,

R13: MUST continue to operate (even if sub-optimally) if metric updates are delayed by low
frequency updates or by problems with the mechanisms used to distribute the metrics.

For example, In highly mobile scenarios, such as fast-moving vehicles mentioned in Section 4.3,
compute metrics can quickly become outdated as the UE moves across base stations and edge
service sites, potentially requiring more frequent updates. However, updates should remain
stable and avoid excessive overhead.
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5.4. Support Instance Affinity

In the CATS system, a service may be provided by one or more service instances that would be
deployed at different locations in the network. Each instance provides equivalent service
functionality to its respective clients. The decision logic of the instance selection is subject to the
packet level communication and packets are forwarded based on the operating status of both
network and computing resources. This resource status will likely change over time, leading to
individual packets potentially being sent to different network locations, possibly segmenting
individual service transactions and breaking service-level semantics. Moreover, when a client
moves, the access point might change and successively lead to the migration of service instances.
If execution changes from one (e.g., virtualized) service instance to another, state/context needs
to be transferred to the new instance. Such required transfer of state/context makes it desirable
to have instance affinity as the default, removing the need for explicit context transfer, while
also supporting an explicit state/context transfer (e.g., when metrics change significantly).

The nature of this affinity is highly dependent on the nature of the service, which could be seen
as an 'instance affinity' to represent the relationship. The minimal affinity of a single request
represents a stateless service, where each service request may be responded to without any state
being held at the service instance for fulfilling the request.

Providing any necessary information/state in the manner of in-band as part of the service
request, e.g., in the form of a multi-form body in an HTTP request or through the URL provided
as part of the request, is one way to achieve such stateless nature.

Alternatively, the affinity to a particular service instance may span more than one request, as in
the AR/VR use case, where the previous client input is needed to render subsequent frames.

However, a client, e.g., a mobile UE, may have many applications running. If all, or majority, of
the applications request the CATS- based services, then the runtime states that need to be
created and accordingly maintained would require high granularity. In the extreme scenario,
this granular requirement could reach the level of per-UE, per-APP, and per-(sub)flow with
regard to a service instance, where a 'flow’ is a logical grouping of packets during a time interval,
identified by some fields from the packet header, such as the 5-tuple transport coordinates
(source address and destination address, source and destination port numbers, and protocol)
(see also [I-D.ietf-cats-framework]). Evidently, these fine-granular runtime states can potentially
place a heavy burden on network devices if they have to dynamically create and maintain them.
On the other hand, it is not appropriate either to place the state-keeping task on clients
themselves.

Besides, there might be the case that UE moves to a new (access) network or the service instance
is migrated to another cloud, which cause the unreachable or inconvenient of the original
service instance. So the UE and service instance mobility also need to be considered.

Therefore, a desirable system,

Yao, et al. Informational Page 19



RFC 0000 CATS: Problem, Use Cases, Requirements February 2026

R14: CATS systems MUST maintain instance affinity for stateful sessions and transactions on a
per-flow basis.

R15: MUST avoid maintaining per-flow states for specific applications in network nodes for
providing instance affinity.

R16: SHOULD support service continuity in the presence of UE or service instance mobility.

5.5. Preserve Communication Confidentiality

Exposing CATS metrics to the network may lead to the leakage of application privacy. In order to
prevent it, it is necessary to consider the methods to handle the sensitive information. For
instance, using general anonymization methods, including hiding the key information
representing the identification of devices, or using an index to represent the service level of
computing resources, or using customized information exposure strategies according to specific
application requirements or network scheduling requirements. At the same time, when
anonymity is achieved, it is important to ensure that the exposed computing information
remains sufficient to enable effective traffic steering. Therefore, a CATS system

R17: MUST preserve the confidentiality of the communication relation between a user and a
service provider by minimizing the exposure of user-relevant information according to user's
demands, but allowing for regulatory requirements in the environment where CATS is
deployed. See also Section 6 for a discussion of confidentiality.

5.6. Correlation between Use Cases and Requirements

A table is presented in this section to better illustrate the correlation between CATS use cases
and requirements, 'X' is for marking that the requirement can be derived from the
corresponding use case.

Requirements Use cases

AR/VR ITS DT SD-WAN Al

Instance Selection R1 X X X X X
R2 X X X X X
Metric Definition R3 X X X X X
R4 X X X X X
R5 X X X X X
R6 X X X X X
R7 X X X X X
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Requirements

R8
R9
R10
Use of Metrics R11
R12
R13
Instance Affinity R14
R15
R16

Confidentiality R17

Use cases
AR/VR ITS
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

DT

X

SD-WAN

X

Table 1: Mapping between CATS Use Cases and Requirements

6. Security Considerations

February 2026

Al

CATS decision-making relies on real-time computing and network status as well as service
information, requiring robust security safeguards to mitigate risks associated with dynamic
service and resource scheduling, and cross-node data transmission.

Core Security Risks and Requirements include:

* User Privacy Leakage Risk

Description: CATS involves user-related data (e.g., access patterns, service requests) across
edge service sites. Unauthorized disclosure of user identifiers or per-user behavior tracking
risks profiling or identity theft, especially in use cases with personal/context-rich data (e.g.,
AR/VR, vehicle trajectories, Al prompts), violating regulations and eroding trust.

R19: User activity privacy MUST be preserved by anonymizing identifying information. Per-
user behavior pattern tracking is prohibited.

* Service Instance Identity Spoofing and Traffic Hijacking

Description: Attackers may spoof legitimate service instance identities or tamper with "CS-
ID-instance address" mappings (per R1), diverting traffic to malicious nodes. This
undermines CATS' core scheduling logic, causing service disruptions, data leaks, and
potential physical harm in safety-critical scenarios.

Yao, et al.
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R20: Service instances MUST be authenticated. and digital signatures SHOULD be used to
provide proof of authentication. "CS-ID - instance address" mapping results MUST be

encrypted.

Tampering and False Reporting of CATS Metrics

Description: Attackers may tamper with core scheduling metrics or submit false data (per R3-
R17), misleading traffic steering decisions. This leads to node overload, link congestion, or
"resource exhaustion attacks," directly degrading Quality of Experience (QoE).

R21: Metric collection and distribution MUST employ integrity checks and encryption.
Mechanisms for secondary validation and traceability of abnormal metrics MUST be
supported, avoiding over-reliance on single-node reports.

Security of Cross-Node Context Migration Data

Description: During user or terminal mobility, session states and computing context (e.g., AR
rendering progress, vehicle status) may be intercepted or tampered with during cross-node
migration (per R18-R22). This impairs service continuity, leaks sensitive data, or causes state
inconsistency.

R22: Migration data MUST use end-to-end encryption, accessible only to authorized target
instances using, for example, Authenticated Encryption with Associated Data (AEAD).
Migration instructions MUST include integrity check codes.

7. TANA Considerations

This document makes no requests for IANA action.
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Appendix A. Appendix A

This section presents an additional CATS use case, which is not included in the main body of this
document. Reasons are that the use case may bring new requirements that are not considered in
the initial charter of CATS working group. The requirements impact the design of CATS
framework and may need further modification or enhancement on the initial CATS framework
that serves all the existing use cases listed in the main body. However, the ISAC use case is
promising and has gained industry consensus. Therefore, this use case may be considered in
future work of CATS working group.
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A.1. Integrated Sensing and Communications (ISAC)

Integrated Sensing and Communications (ISAC) enables wireless networks to perform
simultaneous data transmission and environmental sensing. In a distributed sensing scenario,
multiple network nodes --such as base stations, access points, or edge devices-- collect raw
sensing data from the environment. This data can include radio frequency (RF) reflections,
Doppler shifts, channel state information (CSI), or other physical-layer features that provide
insights into object movement, material composition, or environmental conditions. To extract
meaningful information, the collected raw data must be aggregated and processed by a
designated computing node with sufficient computational resources. This requires efficient
coordination between sensing nodes and computing resources to ensure timely and accurate
analysis, making it a relevant use case for Computing-Aware Traffic Steering (CATS) in IETF.

This use case aligns with ongoing efforts in standardization bodies such as the ETSI ISAC
Industry Specification Group (ISG), particularly Work Item #5 (WI#5), titled 'Integration of
Computing with ISAC'. WI#5 focuses on exploring different forms of computing integration
within ISAC systems, including sensing combined with computing, communications combined
with computing, and the holistic integration of ISAC with computing. The considerations
outlined in this document complement ETSI's work by examining how computing-aware
networking solutions, as developed within CATS, can optimize the processing and routing of
ISAC sensing data.

As an example, we can consider a network domain with multiple sites capable of hosting the
ISAC computing "service", each with potentially different connectivity and computing
characteristics. Figure 6 shows an exemplary scenario. Considering the connectivity and
computing latencies (just as an example of metrics), the best service site is #n-1 in the example
used in the Figure. Note that in the figure we still use the old terminology in which by ICR we
mean Ingress CATS-Forwarder [I-D.ietf-cats-framework], and by ECR we mean Egress CATS-
Forwarder.
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Figure 6: Exemplary ISAC Scenario

In the distributed sensing use case, the sensed data collected by multiple nodes must be
efficiently routed to a computing node capable of processing it. The choice of the computing
node depends on several factors, including computational load, network congestion, and latency
constraints. CATS mechanisms can optimize the selection of the processing node by dynamically
steering the traffic based on computing resource availability and network conditions.
Additionally, as sensing data is often time-sensitive, CATS can ensure low-latency paths while
balancing computational demands across different processing entities. This capability is
essential for real-time applications such as cooperative perception for autonomous systems,
industrial monitoring, and smart city infrastructure.
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A.1.1. Requirements

In addition to some of the requirements already identified for CATS in the main body of this
document, there are several additional challenges and requirements that need to be addressed
for efficient distributed sensing in ISAC-enabled networks:

CATS systems should be able to select an instance where multiple nodes can steer traffic to
simultaneously, ensuring that packets arrive within a maximum time period. This is required
because there are distributed tasks in which there are multiple nodes acting as sensors that
produce sensing data that has to be then processed by a sensing processing function, typically
hosted at the edge. This implies that there is a multi-point to point kind of direction of the traffic,
with connectivity and computing requirements associated (which can be very strict for some
types of sensing schema).

CATS systems should provide mechanisms that implement per node/flow security and privacy
policies to adapt to the nature of the sensitive information that might be exchanged in a sensing
task.

Acknowledgements

The authors would like to thank Adrian Farrel, Peng Liu, Joel Halpern, Jim Guichard, Cheng Li,
Luigi Iannone, Christian Jacquenet, Xiaodong Duan, Yuexia Fu, Huijuan Yao, Zongpeng Du, Jing
Wang, Erum Welling, Ines Robles, Linda Dunbar, Jim Reid, Zaheduzzaman Sarker, Tim Bray,
Samier Barguil, Daniel Migault, Roni Even, Roman Danyliw, Gorry Fairhurst, Ketan Talaulikar,
Andy Newton, Deb Cooley, Erik Kline, and Paul Wouters for their valuable suggestions to this
document.

The authors would like to thank Yizhou Li for her early IETF work of Compute First Network
(CFN) and Dynamic Anycast (Dyncast), which inspired the CATS work.

Contributors

The following people have substantially contributed to this document:

Yizhou Li
Huawei Technologies
Email: liyizhou@huawei.com

Dirk Trossen
Email: dirk@trossen.tech

Mohamed Boucadair
Orange
Email: mohamed.boucadair@orange.com

Yao, et al. Informational Page 26


mailto:liyizhou@huawei.com
mailto:dirk@trossen.tech
mailto:mohamed.boucadair@orange.com

RFC 0000 CATS: Problem, Use Cases, Requirements February 2026

Carlos J. Bernardos
UC3M
Email: cjbc@it.uc3m.es

Peter Willis
Email: pjw7904@rit.edu

Philip Eardley
Email: ietf.philip.eardley@gmail.com

Tianji Jiang
China Mobile
Email: tianjijiang@chinamobile.com

Minh-Ngoc Tran
ETRI
Email: mipearlska@etri.re.kr

Markus Amend
Deutsche Telekom
Email: Markus.Amend@telekom.de

Guangping Huang
ZTE
Email: huang.guangping@zte.com.cn

Dongyu Yuan
ZTE
Email: yuan.dongyu@zte.com.cn

Xinxin Yi
China Unicom
Email: yixx3@chinaunicom.cn

Tao Fu
CAICT
Email: futao@caict.ac.cn

Jordi Ros-Giralt
Qualcomm Europe, Inc.
Email: jros@qti.qualcomm.com

Jaehoon Paul Jeong
Sungkyunkwan University
Email: pauljeong@skku.edu

Yan Wang
Migu Culture Technology Co.,Ltd
Email: wangyan_hyl@migu.chinamobile.com

Yao, et al. Informational Page 27


mailto:cjbc@it.uc3m.es
mailto:pjw7904@rit.edu
mailto:ietf.philip.eardley@gmail.com
mailto:tianjijiang@chinamobile.com
mailto:mipearlska@etri.re.kr
mailto:Markus.Amend@telekom.de
mailto:huang.guangping@zte.com.cn
mailto:yuan.dongyu@zte.com.cn
mailto:yixx3@chinaunicom.cn
mailto:futao@caict.ac.cn
mailto:jros@qti.qualcomm.com
mailto:pauljeong@skku.edu
mailto:wangyan_hy1@migu.chinamobile.com

RFC 0000 CATS: Problem, Use Cases, Requirements February 2026

Authors' Addresses

Kehan Yao
China Mobile
Email: yaokehan@chinamobile.com

Luis M. Contreras
Telefonica
Email: luismiguel.contrerasmurillo@telefonica.com

Hang Shi
Huawei Technologies
Email: shihang9@huawei.com

Shuai Zhang
China Unicom
Email: zhangs366@chinaunicom.cn

Qing An

Alibaba Group
Email: anqging.aq@alibaba-inc.com

Yao, et al. Informational Page 28


mailto:yaokehan@chinamobile.com
mailto:luismiguel.contrerasmurillo@telefonica.com
mailto:shihang9@huawei.com
mailto:zhangs366@chinaunicom.cn
mailto:anqing.aq@alibaba-inc.com

	RFC 0000
	Computing-Aware Traffic Steering (CATS) Problem Statement, Use Cases, and Requirements
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Definition of Terms
	3. Problem Statement
	3.1. Multi-deployment of Edge Service Sites and Service
	3.2. Traffic Steering among Edges Service Sites and Service Instances

	4. Use Cases
	4.1. Overview of Use Cases
	4.2. Example 1: Computing-aware AR or VR
	4.3. Example 2: Computing-aware Intelligent Transportation
	4.4. Example 3: Computing-aware Digital Twin
	4.5. Example 4: Computing-aware SD-WAN
	4.6. Example 5: Computing-aware Distributed AI Training and Inference
	4.6.1. Distributed AI Inference
	4.6.2. Distributed AI Training


	5. Requirements
	5.1. Support Dynamic and Effective Selection among Multiple Service Instances
	5.2. Support Agreement on Metric Representation and Definition
	5.3. Use of CATS Metrics
	5.4. Support Instance Affinity
	5.5. Preserve Communication Confidentiality
	5.6. Correlation between Use Cases and Requirements

	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Appendix A
	A.1. Integrated Sensing and Communications (ISAC)
	A.1.1. Requirements


	Acknowledgements
	Contributors
	Authors' Addresses


