Internet Engineering Task Force

Session Traversal Utilities for NAT

Request for Comments: 8489
Obsoletes: 5389

Category: Standards Track
ISSN: 2070-1721

Abstract

Session Traversal Utilities for NAT
as a tool for other protocols in dealing with NAT traversal.

(IETF) M. Petit-Huguenin
Impedance Mismatch
G. Salgueiro

Cisco

J. Rosenberg

Five9

D. Wing

Citrix

R. Mahy
Unaffiliated

P. Matthews

Nokia

February 2020

(STUN)

(STUN) is a protocol that serves

It can

be used by an endpoint to determine the IP address and port allocated

to it by a NAT.

It can also be used to check connectivity between

two endpoints and as a keep-alive protocol to maintain NAT bindings.
STUN works with many existing NATs and does not require any special

behavior from them.

STUN is not a NAT traversal solution by itself.

Rather, it is a tool

to be used in the context of a NAT traversal solution.

This document obsoletes RFC 5389.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force

(IETF) .

It represents the consensus of the IETF community.

It has

received public review and has been approved for publication by the

Internet Engineering Steering Group

(IESG) . Further information on

Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document,

any errata,

and how to provide feedback on it may be obtained at
https://www.rfc-editor.org/info/rfc8489.

Petit-Huguenin, et al.

Standards Track

[Page 1]



REFC 8489 STUN February 2020

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

U WN R

I8 0§ wlk Y L b Lo wil A ) o I 4
Overview oOf Operation . ...ttt ittt ittt eeeeeeeeneeseoseoaasnnss 5
TErMINO L OgY t vttt ettt e et o aeeeeeoeeseeesoaessessaessessaesssssaeess 7
I 5 o B S i I o 7
STUN Message StrUCLUTLE &ttt ittt ittt eeeeeeneeeenesessannsssssannns 9
Base ProtoCOl ProCedUrEeS ...ttt eeeeeeennnnnnas 11
6.1. Forming a Request or an Indication .........ciiciiiiiieeeenn. 11
6.2. Sending the Request or Indication .........eiiiiiiieeneeans 12
6.2.1. Sending over UDP or DTLS-over-UDP ........iiuvuuunnn. 13
6.2.2. Sending over TCP or TLS-over—-TCP .......iiiuivuwnnnnnn. 14
6.2.3. Sending over TLS-over-TCP or DTLS-over-UDP ......... 15

6.3. Receiving a STUN MESSATE .ttt teeeeeeeeeeeeeneeaeeaeennenens 16
6.3.1. Processing a Request .....iiiiitiiitintieneeneenennnns 17
6.3.1.1. Forming a Success or Error Response ....... 17

6.3.1.2. Sending the Success or Error Response ..... 18

6.3.2. Processing an Indication .......c.ciiiiiiiinireennnnns 18
6.3.3. Processing a SuccCess RESPONSE .. iiitteennereennnnns 19
6.3.4. Processing an Error RESPONSE ...ttt nnereennnnns 19
FINGERPRINT MeChanism ..t inienteeeeeeeeeeeeeoeeoeeoeeosenens 20
DNS DisSCOVEry Of @ ServVer ittt ittt eneeneeeeeeseossossasesnaesens 20
8.1. STUN URI Scheme SemanticCs .....uuiuiiiiiiiiiiiiitiiiiiieennns 21
Authentication and Message-Integrity Mechanisms ................ 22
9.1. Short-Term Credential Mechanism .........ciiiiiiiiinnnnnnn. 23
9.1 .1. HMAC KeY t ettt vt eetoeeeeeoeeeeeseesoeeaeeaeeaeennens 23
9.1.2. Forming a Request or Indication ...........cciccu... 23
9.1.3. Receiving a Request or Indication .................. 23
9.1.4. Recelving @ RESPONSE ittt tteeteeeeeeseoesaesonnnsens 25
9.1.5. Sending Subsequent RequesSts ...t nneeeennnnns 25

9.2. Long-Term Credential Mechanism .........ciiiiiiiiinnnnnnnn. 26
9.2.1. Bid-Down Attack Prevention ..........ciuiiiiieennenn. 27
9.2.2. HMAC KeY t ettt vttt oneeeeeeeseeseesassoseaeeasanness 27

Petit-Huguenin, et al. Standards Track [Page 2]



REFC 8489 STUN February 2020

10.
11.
12.
13.
14.

15.
l6.

17.
18.

Petit-—

9.2.3. Forming a RequUest ...ttt ittt ntenteneeneeneennss 28
9.2.3.1. First ReqUESsST ..ttt ittt ieeteeeenenoenannns 28
9.2.3.2. Subsequent Requests .....iiiiiiiinnreeennnns 29
9.2.4. Recelving a Request ...ttt ittt eeennneeennnnnns 29
9.2.5. Recelving a RESPONSE ittt ittt ttnneetennnneeennnnnns 31
ALTERNATE-SERVER Mechanism . ...ttt tieteeeeneeeeeeeeaanenns 33
Backwards Compatibility with RFC 3489 ... ...ttt teenennnas 34
Basic Server Behavior . ...ttt ittt nnnnnnnns 34
STUN USGGES « e e e vt oo osoesocensssssssssssssssssssssssssssssssess 35
STUN Attributes ...t ettt ettt 36
14 .1 . MAPPED—ADDRESS &ttt ittt ttteeeeeeeeeeeeeeeoeeaeeoeeoeeneens 37
14.2. XOR-MAPPED—ADDRE S S . it ittt ittt et teeeeeeeeeeeeoseaseonaennnens 38
14 .3, USERNAME . ittt ittt ttteneeeeeeeeessassossossasssssssssnsss 39
14 .4, USERHASH & ittt ittt ittt eeeeeeeeesoessassossossassasssnssnsss 40
14.5. MESSAGE—INTEGRITY &ttt tit ittt eeneeeneoseoseassansssnssnsss 40
14.6. MESSAGE-INTEGRITY-—SHAZ56 ..ttt ittt eeeneeeeennnesennnnnns 41
14.7. FINGERPRINT ..t iiit it ittt eeeeeeeeeeeeeoeeeaeeaeeaeeanseneens 41
14.8. ERROR=CODE .ttt ittt ttteneeeeeeeeeeeeesossoseaseasesnenesss 42
14 .9, REALM 4ttt ittt ettt ettt ettt et eeaeaeaaaaeaeeeeeeeeeeeeneeenns 44
L14.10. NONCE &t ittt ittt ittt tseteeneeeeneeaaaaeeeeeeeeeeeeeeeeesns 44
14.11. PASSWORD—ALGORITHMS .ttt it tnetneeonseoseoseossansssnssnsss 44
14.12. PASSWORD-ALGORITHM .ttt ittt it iieteeeeeeeeeeeeeeeeeeennns 45
14.13. UNKNOWN-ATTRIBUTES . ittt it ittt eeeeeeeeeoeeaeeaeeoneneens 45
14 .14, SOFTWARE ittt ittt eeeeeeeeeseeseeeessossaseasesnsenesss 46
14.15. ALTERNATE-—SERVER .. ittt ittt tittneeeeeossoseoseoseonasnnss 46
14.16. ALTERNATE-DOMATIN .ttt ititeeneeeeeeeeeeaesesaesesesesasasasas 46
Operational Considerations ... uiii ittt neeteeeeeeeeeeaseesannns 47
Security Considerations ...t iiii it eeeeeeeeeeneeeeansaeseans 47
16.1. Attacks against the Protocol ........ciiiiiiiinerennnnnns 47
16.1.1. Outside AttacKks ittt ittt ittt ittt teeeeeaonanas 47
16.1.2. Inside Attacks ...ttt ittt 48
16.1.3. Bid-Down AttacCKks ..ttt ittt ittt ittt 48
16.2. Attacks Affecting the Usage ...ttt itenneeennnnnns 50
16.2.1. Attack I: Distributed DoS (DDoS) against a
= e = 51
16.2.2. Attack II: Silencing a Client ...........0 i 51
16.2.3. Attack III: Assuming the Identity of a Client ..... 52
16.2.4. Attack IV: EavesdropPPing . ceeeeeeeeeeeeeeoeeeeeens 52
16.3. Hash Agility Plan it iieeeeeeeeeeeeeeeesonessssonnessss 52
IAB Considerations ittt ittt ettt ettt eeeeeens 53
IANA Considerations ..ttt ittt it tteeeteeeeeeeeeneeeeeannnens 53
18.1. STUN Security Features Registry ....c.iieiiiiiiiiieneennennns 53
18.2. STUN Methods Registry ittt ii ittt teeteneeeeeeeonesnnss 54
18.3. STUN Attributes Registry i iiieiiiitineneeeeeeeeeeonnannns 54
18.3.1. Updated Attributes ...ttt ittt eenneennns 55
18.3.2. New Attributes ...... ittt ittt 55
18.4. STUN Error Codes Registry .«.ieuiiiitiiiieteenneeeennnnnns 56
18.5. STUN Password Algorithms Registry ......iciiiiiiiieneennn. 56

Huguenin, et al. Standards Track [Page 3]



REFC 8489 STUN February 2020

18.5.1. Password Algorithms ...... ittt eneenneas 57
18.5.1.1. MDS ittt ittt e 57
18.5.1.2. SHA-256 ..ttt tneeeeeeneeeesonnsannans 57
18.6. STUN UDP and TCP Port NUMDETrS .. it iiteeeeneenneneeneennns 57
19. Changes since REC 5380 ...ttt ittt eeeeeeeeeeeeeeeeonannns 57
20 . RELEIENCE S i ittt it ittt ittt ittt ettt ettt et eeeeeeeeeeeeeeeeeenaean 58
20.1. Normative ReferencCes . ...ttt ittt eeeeeneeneeneenaonnss 58
20.2. Informative ReferencCes ... .i i ittt ittt teeeeeeeeeeeeonnenens 61
Appendix A. C Snippet to Determine STUN Message TYyPES .«..eeeeeennn 64
Appendix B. Test VeCthorsS ..ttt ittt eteeeeeeeeeeeseesensssasannns 64
B.1. Sample Request with Long-Term Authentication with
MESSAGE-INTEGRITY-SHA256 and USERHASH ... ...ttt enennnnn 65
Acknowledgement s & i ittt ittt ittt ittt et e e 66
(@70 0 il ale I <1 6 ¥ 3= J U 66
AULhOTr S’ AdJrE S SE S v ittt ittt eeeeeeeeeenseeneeeoeeeoeeeaeeaeeaneaneas 67
1. Introduction

The protocol defined in this specification, Session Traversal
Utilities for NAT (STUN), provides a tool for dealing with Network
Address Translators (NATs). It provides a means for an endpoint to
determine the IP address and port allocated by a NAT that corresponds
to its private IP address and port. It also provides a way for an
endpoint to keep a NAT binding alive. With some extensions, the
protocol can be used to do connectivity checks between two endpoints
[REFC8445] or to relay packets between two endpoints [RFC5766].

In keeping with its tool nature, this specification defines an
extensible packet format, defines operation over several transport
protocols, and provides for two forms of authentication.

STUN is intended to be used in the context of one or more NAT
traversal solutions. These solutions are known as "STUN Usages".
Each usage describes how STUN is utilized to achieve the NAT
traversal solution. Typically, a usage indicates when STUN messages
get sent, which optional attributes to include, what server is used,
and what authentication mechanism is to be used. Interactive
Connectivity Establishment (ICE) [RFC8445] is one usage of STUN. SIP
Outbound [RFC5626] is another usage of STUN. 1In some cases, a usage
will require extensions to STUN. A STUN extension can be in the form
of new methods, attributes, or error response codes. More
information on STUN Usages can be found in Section 13.

Petit-Huguenin, et al. Standards Track [Page 4]



REFC 8489 STUN February 2020

2. Overview of Operation

This section is descriptive only.

I \
// STUN \\
| Server |
A\ //
\————— /
tomm + Public Internet
................ NAT 2 | e
o +
tomm + Private Network 2
................ NAT 1
o +
/=== \
// STUN \\
| Client |
AN\ // Private Network 1
\-———- /

Figure 1: One Possible STUN Configuration

One possible STUN configuration is shown in Figure 1. 1In this
configuration, there are two entities (called STUN agents) that
implement the STUN protocol. The lower agent in the figure is the
client, which is connected to private network 1. This network
connects to private network 2 through NAT 1. Private network 2
connects to the public Internet through NAT 2. The upper agent in
the figure is the server, which resides on the public Internet.

STUN is a client-server protocol. It supports two types of
transactions. One 1is a request/response transaction in which a
client sends a request to a server, and the server returns a
response. The second is an indication transaction in which either
agent —-- client or server —-- sends an indication that generates no
response. Both types of transactions include a transaction ID, which

Petit-Huguenin, et al. Standards Track [Page 5]



REFC 8489 STUN February 2020

is a randomly selected 96-bit number. For request/response
transactions, this transaction ID allows the client to associate the
response with the request that generated it; for indications, the
transaction ID serves as a debugging aid.

All STUN messages start with a fixed header that includes a method, a
class, and the transaction ID. The method indicates which of the
various requests or indications this is; this specification defines
just one method, Binding, but other methods are expected to be
defined in other documents. The class indicates whether this is a
request, a success response, an error response, or an indication.
Following the fixed header comes zero or more attributes, which are
Type-Length-Value extensions that convey additional information for
the specific message.

This document defines a single method called "Binding". The Binding
method can be used either in request/response transactions or in
indication transactions. When used in request/response transactions,
the Binding method can be used to determine the particular binding a
NAT has allocated to a STUN client. When used in either request/
response or in indication transactions, the Binding method can also
be used to keep these bindings alive.

In the Binding request/response transaction, a Binding request is
sent from a STUN client to a STUN server. When the Binding request
arrives at the STUN server, it may have passed through one or more
NATs between the STUN client and the STUN server (in Figure 1, there

are two such NATs). As the Binding request message passes through a
NAT, the NAT will modify the source transport address (that is, the
source IP address and the source port) of the packet. As a result,

the source transport address of the request received by the server
will be the public IP address and port created by the NAT closest to
the server. This is called a "reflexive transport address". The
STUN server copies that source transport address into an XOR-MAPPED-
ADDRESS attribute in the STUN Binding response and sends the Binding
response back to the STUN client. As this packet passes back through
a NAT, the NAT will modify the destination transport address in the
IP header, but the transport address in the XOR-MAPPED-ADDRESS
attribute within the body of the STUN response will remain untouched.
In this way, the client can learn its reflexive transport address
allocated by the outermost NAT with respect to the STUN server.

In some usages, STUN must be multiplexed with other protocols (e.g.,
[RFC8445] and [RFC5626]). 1In these usages, there must be a way to

inspect a packet and determine if it is a STUN packet or not. STUN
provides three fields in the STUN header with fixed values that can

Petit-Huguenin, et al. Standards Track [Page 6]



REFC 8489 STUN February 2020

be used for this purpose. If this is not sufficient, then STUN
packets can also contain a FINGERPRINT value, which can further be
used to distinguish the packets.

STUN defines a set of optional procedures that a usage can decide to
use, called "mechanisms". These mechanisms include DNS discovery, a
redirection technique to an alternate server, a fingerprint attribute
for demultiplexing, and two authentication and message-integrity
exchanges. The authentication mechanisms revolve around the use of a
username, password, and message-integrity wvalue. Two authentication
mechanisms, the long-term credential mechanism and the short-term
credential mechanism, are defined in this specification. Each usage
specifies the mechanisms allowed with that usage.

In the long-term credential mechanism, the client and server share a
pre-provisioned username and password and perform a digest challenge/
response exchange inspired by the one defined for HTTP [RFC7616] but
differing in details. In the short-term credential mechanism, the
client and the server exchange a username and password through some
out-of-band method prior to the STUN exchange. For example, in the
ICE usage [RFC8445], the two endpoints use out-of-band signaling to
exchange a username and password. These are used to integrity
protect and authenticate the request and response. There is no
challenge or nonce used.

3. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

4. Definitions

STUN Agent: A STUN agent is an entity that implements the STUN
protocol. The entity can be either a STUN client or a STUN
server.

STUN Client: A STUN client is an entity that sends STUN requests and
receives STUN responses and STUN indications. A STUN client can
also send indications. In this specification, the terms "STUN
client” and "client" are synonymous.

STUN Server: A STUN server is an entity that receives STUN requests
and STUN indications and that sends STUN responses. A STUN server
can also send indications. In this specification, the terms "STUN
server" and "server" are synonymous.

Petit-Huguenin, et al. Standards Track [Page 7]



REFC 8489 STUN February 2020

Transport Address: The combination of an IP address and port number
(such as a UDP or TCP port number).

Reflexive Transport Address: A transport address learned by a client
that identifies that client as seen by another host on an IP
network, typically a STUN server. When there is an intervening
NAT between the client and the other host, the reflexive transport
address represents the mapped address allocated to the client on
the public side of the NAT. Reflexive transport addresses are
learned from the mapped address attribute (MAPPED-ADDRESS or XOR-
MAPPED-ADDRESS) in STUN responses.

Mapped Address: Same meaning as reflexive address. This term is
retained only for historic reasons and due to the naming of the
MAPPED-ADDRESS and XOR-MAPPED-ADDRESS attributes.

Long-Term Credential: A username and associated password that
represent a shared secret between client and server. Long-term
credentials are generally granted to the client when a subscriber
enrolls in a service and persist until the subscriber leaves the
service or explicitly changes the credential.

Long-Term Password: The password from a long-term credential.

Short-Term Credential: A temporary username and associated password
that represent a shared secret between client and server. Short-
term credentials are obtained through some kind of protocol
mechanism between the client and server, preceding the STUN
exchange. A short-term credential has an explicit temporal scope,
which may be based on a specific amount of time (such as 5
minutes) or on an event (such as termination of a Session
Initiation Protocol (SIP) [RFC3261] dialog). The specific scope
of a short-term credential is defined by the application usage.

Short-Term Password: The password component of a short-term
credential.

STUN Indication: A STUN message that does not receive a response.

Attribute: The STUN term for a Type-Length-Value (TLV) object that
can be added to a STUN message. Attributes are divided into two
types: comprehension-required and comprehension-optional. STUN
agents can safely ignore comprehension-optional attributes they
don’t understand but cannot successfully process a message if it
contains comprehension-required attributes that are not
understood.

Petit-Huguenin, et al. Standards Track [Page 8]



REFC 8489 STUN February 2020

RTO: Retransmission TimeOut, which defines the initial period of
time between transmission of a request and the first retransmit of
that request.

5. STUN Message Structure

STUN messages are encoded in binary using network-oriented format
(most significant byte or octet first, also commonly known as big-
endian). The transmission order is described in detail in Appendix B
of [RFC0791]. Unless otherwise noted, numeric constants are in
decimal (base 10).

All STUN messages comprise a 20-byte header followed by zero or more
attributes. The STUN header contains a STUN message type, message
length, magic cookie, and transaction ID.

0 1 2 3
01234567890123456789012345678901
s s e L s S e e e e e e T At i R e e e R

|0 0] STUN Message Type | Message Length

s s e s e e T s s e e e A At s e e R R e e R
| Magic Cookie |
Fot—t—t—t—t—t—t—t—t—t—t—t—t -ttt —F—F—F—F—F—F—F—F—F—F—F—F—t—+—+—+
| |

| Transaction ID (96 bits)

+—t—F—F—F—F—F—F—F—+—+—F+—F—F—F+—F+—F—F+—F—F—F—F—F—F—F—F—F—F—F—F+—+—+—+
Figure 2: Format of STUN Message Header

The most significant 2 bits of every STUN message MUST be zeroes.
This can be used to differentiate STUN packets from other protocols
when STUN is multiplexed with other protocols on the same port.

The message type defines the message class (request, success
response, error response, or indication) and the message method (the
primary function) of the STUN message. Although there are four
message classes, there are only two types of transactions in STUN:
request/response transactions (which consist of a request message and
a response message) and indication transactions (which consist of a
single indication message). Response classes are split into error
and success responses to aid in quickly processing the STUN message.

Petit-Huguenin, et al. Standards Track [Page 9]



REFC 8489 STUN February 2020

The STUN Message Type field is decomposed further into the following
structure:

0 1
2 3 4567890123475
+——t——F—+—+—+
M M |M|M|wM|
|11|10|9]8]7]|
Fo—t——t—t—+—+

C
1

Figure 3: Format of STUN Message Type Field

Here the bits in the STUN Message Type field are shown as most
significant (M11) through least significant (MO). M1l through MO
represent a 12-bit encoding of the method. Cl and CO represent a
2-bit encoding of the class. A class of 0b00 is a request, a class
of 0b01l is an indication, a class of 0bl0 is a success response, and
a class of 0bll is an error response. This specification defines a
single method, Binding. The method and class are orthogonal, so that
for each method, a request, success response, error response, and
indication are possible for that method. Extensions defining new
methods MUST indicate which classes are permitted for that method.

For example, a Binding request has class=0b00 (request) and
method=0b000000000001 (Binding) and is encoded into the first 16 bits
as 0x0001. A Binding response has class=0bl0 (success response) and
method=0b000000000001 and is encoded into the first 16 bits as
0x0101.

Note: This unfortunate encoding is due to assignment of values in
[RFC3489] that did not consider encoding indication messages,
success responses, and errors responses using bit fields.

The Magic Cookie field MUST contain the fixed value 0x2112A442 in
network byte order. In [RFC3489], the 32 bits comprising the Magic
Cookie field were part of the transaction ID; placing the magic
cookie in this location allows a server to detect if the client will
understand certain attributes that were added to STUN by [RFC5389].
In addition, it aids in distinguishing STUN packets from packets of
other protocols when STUN is multiplexed with those other protocols
on the same port.

The transaction ID is a 96-bit identifier, used to uniquely identify
STUN transactions. For request/response transactions, the
transaction ID is chosen by the STUN client for the request and
echoed by the server in the response. For indications, it is chosen
by the agent sending the indication. It primarily serves to
correlate requests with responses, though it also plays a small role

Petit-Huguenin, et al. Standards Track [Page 10]



REFC 8489 STUN February 2020

in helping to prevent certain types of attacks. The server also uses
the transaction ID as a key to identify each transaction uniquely
across all clients. As such, the transaction ID MUST be uniformly
and randomly chosen from the interval 0 .. 2**96-1 and MUST be
cryptographically random. Resends of the same request reuse the same
transaction ID, but the client MUST choose a new transaction ID for
new transactions unless the new request is bit-wise identical to the
previous request and sent from the same transport address to the same
IP address. Success and error responses MUST carry the same
transaction ID as their corresponding request. When an agent is
acting as a STUN server and STUN client on the same port, the
transaction IDs in requests sent by the agent have no relationship to
the transaction IDs in requests received by the agent.

The message length MUST contain the size of the message in bytes, not
including the 20-byte STUN header. Since all STUN attributes are
padded to a multiple of 4 bytes, the last 2 bits of this field are
always zero. This provides another way to distinguish STUN packets
from packets of other protocols.

Following the STUN fixed portion of the header are zero or more
attributes. Each attribute is TLV (Type-Length-Value) encoded.
Details of the encoding and the attributes themselves are given in
Section 14.

6. Base Protocol Procedures

This section defines the base procedures of the STUN protocol. It
describes how messages are formed, how they are sent, and how they
are processed when they are received. It also defines the detailed
processing of the Binding method. Other sections in this document
describe optional procedures that a usage may elect to use in certain
situations. Other documents may define other extensions to STUN, by
adding new methods, new attributes, or new error response codes.

6.1. Forming a Request or an Indication

When formulating a request or indication message, the agent MUST
follow the rules in Section 5 when creating the header. In addition,
the message class MUST be either "Request" or "Indication" (as
appropriate), and the method must be either Binding or some method
defined in another document.

The agent then adds any attributes specified by the method or the
usage. For example, some usages may specify that the agent use an
authentication method (Section 9) or the FINGERPRINT attribute
(Section 7).

Petit-Huguenin, et al. Standards Track [Page 11]



REFC 8489 STUN February 2020

If the agent is sending a request, it SHOULD add a SOFTWARE attribute
to the request. Agents MAY include a SOFTWARE attribute in
indications, depending on the method. Extensions to STUN should
discuss whether SOFTWARE is useful in new indications. ©Note that the
inclusion of a SOFTWARE attribute may have security implications; see
Section 16.1.2 for details.

For the Binding method with no authentication, no attributes are
required unless the usage specifies otherwise.

All STUN messages sent over UDP or DTLS-over-UDP [RFC6347] SHOULD be
less than the path MTU, if known.

If the path MTU is unknown for UDP, messages SHOULD be the smaller of
576 bytes and the first-hop MTU for IPv4 [RFC1122] and 1280 bytes for
IPv6 [RFC8200]. This value corresponds to the overall size of the IP
packet. Consequently, for IPv4, the actual STUN message would need
to be less than 548 bytes (576 minus 20-byte IP header, minus 8-byte
UDP header, assuming no IP options are used).

If the path MTU is unknown for DTLS-over-UDP, the rules described in
the previous paragraph need to be adjusted to take into account the
size of the (13-byte) DTLS Record header, the Message Authentication
Code (MAC) size, and the padding size.

STUN provides no ability to handle the case where the request is
smaller than the MTU but the response is larger than the MTU. It is
not envisioned that this limitation will be an issue for STUN. The
MTU limitation is a SHOULD, not a MUST, to account for cases where
STUN itself is being used to probe for MTU characteristics [RFC5780].
See also [STUN-PMTUD] for a framework that uses STUN to add Path MTU
Discovery to protocols that lack such a mechanism. Outside of this
or similar applications, the MTU constraint MUST be followed.

6.2. Sending the Request or Indication

The agent then sends the request or indication. This document
specifies how to send STUN messages over UDP, TCP, TLS-over-TCP, or
DTLS-over-UDP; other transport protocols may be added in the future.
The STUN Usage must specify which transport protocol is used and how
the agent determines the IP address and port of the recipient.
Section 8 describes a DNS-based method of determining the IP address
and port of a server that a usage may elect to use.

At any time, a client MAY have multiple outstanding STUN requests

with the same STUN server (that is, multiple transactions in
progress, with different transaction IDs). Absent other limits to

Petit-Huguenin, et al. Standards Track [Page 12]



REFC 8489 STUN February 2020

the rate of new transactions (such as those specified by ICE for
connectivity checks or when STUN is run over TCP), a client SHOULD
limit itself to ten outstanding transactions to the same server.

6.2.1. Sending over UDP or DTLS-over-UDP

When running STUN over UDP or STUN over DTLS-over-UDP [RFC7350], it
is possible that the STUN message might be dropped by the network.
Reliability of STUN request/response transactions is accomplished
through retransmissions of the request message by the client
application itself. STUN indications are not retransmitted; thus,
indication transactions over UDP or DTLS-over-UDP are not reliable.

A client SHOULD retransmit a STUN request message starting with an
interval of RTO ("Retransmission TimeOut"), doubling after each
retransmission. The RTO is an estimate of the round-trip time (RTT)
and is computed as described in [RFC6298], with two exceptions.
First, the initial wvalue for RTO SHOULD be greater than or equal to
500 ms. The exception cases for this "SHOULD" are when other
mechanisms are used to derive congestion thresholds (such as the ones
defined in ICE for fixed-rate streams) or when STUN is used in non-
Internet environments with known network capacities. In fixed-line
access links, a value of 500 ms is RECOMMENDED. Second, the value of
RTO SHOULD NOT be rounded up to the nearest second. Rather, a 1 ms
accuracy SHOULD be maintained. As with TCP, the usage of Karn’s
algorithm is RECOMMENDED [KARN87]. When applied to STUN, it means
that RTT estimates SHOULD NOT be computed from STUN transactions that
result in the retransmission of a request.

The value for RTO SHOULD be cached by a client after the completion
of the transaction and used as the starting value for RTO for the
next transaction to the same server (based on equality of IP
address). The wvalue SHOULD be considered stale and discarded if no
transactions have occurred to the same server in the last 10 minutes.

Retransmissions continue until a response is received or until a
total of Rc requests have been sent. Rc SHOULD be configurable and
SHOULD have a default of 7. If, after the last request, a duration
equal to Rm times the RTO has passed without a response (providing
ample time to get a response if only this final request actually
succeeds), the client SHOULD consider the transaction to have failed.
Rm SHOULD be configurable and SHOULD have a default of 16. A STUN
transaction over UDP or DTLS-over-UDP is also considered failed if
there has been a hard ICMP error [RFC1122]. For example, assuming an
RTO of 500 ms, requests would be sent at times 0 ms, 500 ms, 1500 ms,
3500 ms, 7500 ms, 15500 ms, and 31500 ms. If the client has not
received a response after 39500 ms, the client will consider the
transaction to have timed out.

Petit-Huguenin, et al. Standards Track [Page 13]



REFC 8489 STUN February 2020

6.2.2. Sending over TCP or TLS-over-TCP

For TCP and TLS-over-TCP [RFC8446], the client opens a TCP connection
to the server.

In some usages of STUN, STUN is the only protocol over the TCP

connection. In this case, it can be sent without the aid of any
additional framing or demultiplexing. In other usages, or with other
extensions, it may be multiplexed with other data over a TCP
connection. In that case, STUN MUST be run on top of some kind of

framing protocol, specified by the usage or extension, which allows
for the agent to extract complete STUN messages and complete
application-layer messages. The STUN service running on the well-
known port or ports discovered through the DNS procedures in

Section 8 is for STUN alone, and not for STUN multiplexed with other
data. Consequently, no framing protocols are used in connections to
those servers. When additional framing is utilized, the usage will
specify how the client knows to apply it and what port to connect to.
For example, in the case of ICE connectivity checks, this information
is learned through out-of-band negotiation between client and server.

Reliability of STUN over TCP and TLS-over—-TCP is handled by TCP
itself, and there are no retransmissions at the STUN protocol level.
However, for a request/response transaction, if the client has not
received a response by Ti seconds after it sent the request message,
it considers the transaction to have timed out. Ti SHOULD be
configurable and SHOULD have a default of 39.5 s. This value has
been chosen to equalize the TCP and UDP timeouts for the default
initial RTO.

In addition, if the client is unable to establish the TCP connection,
or the TCP connection is reset or fails before a response is
received, any request/response transaction in progress is considered
to have failed.

The client MAY send multiple transactions over a single TCP (or TLS-—
over—-TCP) connection, and it MAY send another request before
receiving a response to the previous request. The client SHOULD keep
the connection open until it:

o has no further STUN requests or indications to send over that
connection,

o has no plans to use any resources (such as a mapped address
(MAPPED-ADDRESS or XOR-MAPPED-ADDRESS) or relayed address
[REC5766]) that were learned though STUN requests sent over that
connection,

Petit-Huguenin, et al. Standards Track [Page 14]



REFC 8489 STUN February 2020

o 1if multiplexing other application protocols over that port, has
finished using those other protocols,

o 1f using that learned port with a remote peer, has established
communications with that remote peer, as is required by some TCP
NAT traversal techniques (e.g., [RFC6544]).

The details of an eventual keep-alive mechanism are left to each STUN
Usage. In any case, if a transaction fails because an idle TCP
connection doesn’t work anymore, the client SHOULD send a RST and try
to open a new TCP connection.

At the server end, the server SHOULD keep the connection open and let
the client close it, unless the server has determined that the
connection has timed out (for example, due to the client
disconnecting from the network). Bindings learned by the client will
remain valid in intervening NATs only while the connection remains
open. Only the client knows how long it needs the binding. The
server SHOULD NOT close a connection if a request was received over
that connection for which a response was not sent. A server MUST NOT
ever open a connection back towards the client in order to send a
response. Servers SHOULD follow best practices regarding connection
management in cases of overload.

6.2.3. Sending over TLS-over-TCP or DTLS-over-UDP

When STUN is run by itself over TLS-over-TCP or DTLS-over-UDP, the
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 and
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 ciphersuites MUST be
implemented (for compatibility with older versions of this protocol),
except if deprecated by rules of a specific STUN usage. Other
ciphersuites MAY be implemented. Note that STUN clients and servers
that implement TLS version 1.3 [RFC8446] or subsequent versions are
also required to implement mandatory ciphersuites from those
specifications and SHOULD disable usage of deprecated ciphersuites

when they detect support for those specifications. Perfect Forward
Secrecy (PFS) ciphersuites MUST be preferred over non-PFS
ciphersuites. Ciphersuites with known weaknesses, such as those

based on (single) DES and RC4, MUST NOT be used. Implementations
MUST disable TLS-level compression.

These recommendations are just a part of the recommendations in
[BCP195] that implementations and deployments of a STUN Usage using
TLS or DTLS MUST follow.

When it receives the TLS Certificate message, the client MUST verify

the certificate and inspect the site identified by the certificate.
If the certificate is invalid or revoked, or if it does not identify

Petit-Huguenin, et al. Standards Track [Page 15]



REFC 8489 STUN February 2020

the appropriate party, the client MUST NOT send the STUN message or
otherwise proceed with the STUN transaction. The client MUST verify
the identity of the server. To do that, it follows the
identification procedures defined in [RFC6125], with a certificate
containing an identifier of type DNS-ID or CN-ID, optionally with a
wildcard character as the leftmost label, but not of type SRV-ID or
URI-ID.

When STUN is run multiplexed with other protocols over a TLS-over-TCP
connection or a DTLS-over-UDP association, the mandatory ciphersuites
and TLS handling procedures operate as defined by those protocols.

6.3. Receiving a STUN Message

This section specifies the processing of a STUN message. The
processing specified here is for STUN messages as defined in this
specification; additional rules for backwards compatibility are
defined in Section 11. Those additional procedures are optional, and
usages can elect to utilize them. First, a set of processing
operations is applied that is independent of the class. This is
followed by class-specific processing, described in the subsections
that follow.

When a STUN agent receives a STUN message, it first checks that the
message obeys the rules of Section 5. It checks that the first two
bits are 0, that the Magic Cookie field has the correct wvalue, that
the message length is sensible, and that the method value is a
supported method. It checks that the message class is allowed for
the particular method. 1If the message class is "Success Response" or
"Error Response", the agent checks that the transaction ID matches a
transaction that is still in progress. If the FINGERPRINT extension
is being used, the agent checks that the FINGERPRINT attribute is
present and contains the correct value. If any errors are detected,
the message is silently discarded. In the case when STUN is being
multiplexed with another protocol, an error may indicate that this is
not really a STUN message; in this case, the agent should try to
parse the message as a different protocol.

The STUN agent then does any checks that are required by a
authentication mechanism that the usage has specified (see
Section 9).

Once the authentication checks are done, the STUN agent checks for
unknown attributes and known-but-unexpected attributes in the
message. Unknown comprehension-optional attributes MUST be ignored
by the agent. Known-but-unexpected attributes SHOULD be ignored by
the agent. Unknown comprehension-required attributes cause
processing that depends on the message class and is described below.

Petit-Huguenin, et al. Standards Track [Page 16]



REFC 8489 STUN February 2020

At this point, further processing depends on the message class of the
request.

6.3.1. Processing a Request

If the request contains one or more unknown comprehension-required
attributes, the server replies with an error response with an error
code of 420 (Unknown Attribute) and includes an UNKNOWN-ATTRIBUTES
attribute in the response that lists the unknown comprehension-
required attributes.

Otherwise, the server then does any additional checking that the
method or the specific usage requires. If all the checks succeed,
the server formulates a success response as described below.

When run over UDP or DTLS-over-UDP, a request received by the server
could be the first request of a transaction or could be a
retransmission. The server MUST respond to retransmissions such that
the following property is preserved: if the client receives the
response to the retransmission and not the response that was sent to
the original request, the overall state on the client and server is
identical to the case where only the response to the original
retransmission is received or where both responses are received (in
which case the client will use the first). The easiest way to meet
this requirement is for the server to remember all transaction IDs
received over UDP or DTLS-over-UDP and their corresponding responses
in the last 40 seconds. However, this requires the server to hold
state and is inappropriate for any requests that are not
authenticated. Another way is to reprocess the request and recompute
the response. The latter technique MUST only be applied to requests
that are idempotent (a request is considered idempotent when the same
request can be safely repeated without impacting the overall state of
the system) and result in the same success response for the same
request. The Binding method is considered to be idempotent. Note
that there are certain rare network events that could cause the
reflexive transport address value to change, resulting in a different
mapped address in different success responses. Extensions to STUN
MUST discuss the implications of request retransmissions on servers
that do not store transaction state.

6.3.1.1. Forming a Success or Error Response
When forming the response (success or error), the server follows the
rules of Section 6. The method of the response is the same as that

of the request, and the message class is either "Success Response" or
"Error Response".

Petit-Huguenin, et al. Standards Track [Page 17]



REFC 8489 STUN February 2020

For an error response, the server MUST add an ERROR-CODE attribute
containing the error code specified in the processing above. The
reason phrase is not fixed but SHOULD be something suitable for the
error code. For certain errors, additional attributes are added to
the message. These attributes are spelled out in the description
where the error code is specified. For example, for an error code of
420 (Unknown Attribute), the server MUST include an UNKNOWN-
ATTRIBUTES attribute. Certain authentication errors also cause
attributes to be added (see Section 9). Extensions may define other
errors and/or additional attributes to add in error cases.

If the server authenticated the request using an authentication
mechanism, then the server SHOULD add the appropriate authentication
attributes to the response (see Section 9).

The server also adds any attributes required by the specific method
or usage. In addition, the server SHOULD add a SOFTWARE attribute to
the message.

For the Binding method, no additional checking is required unless the
usage specifies otherwise. When forming the success response, the
server adds an XOR-MAPPED-ADDRESS attribute to the response; this
attribute contains the source transport address of the request
message. For UDP or DTLS-over-UDP, this is the source IP address and
source UDP port of the request message. For TCP and TLS-over-TCP,
this is the source IP address and source TCP port of the TCP
connection as seen by the server.

6.3.1.2. Sending the Success or Error Response

The response (success or error) is sent over the same transport as
the request was received on. If the request was received over UDP or
DTLS-over-UDP, the destination IP address and port of the response
are the source IP address and port of the received request message,
and the source IP address and port of the response are equal to the
destination IP address and port of the received request message. If
the request was received over TCP or TLS-over-TCP, the response is
sent back on the same TCP connection as the request was received on.

The server is allowed to send responses in a different order than it
received the requests.

6.3.2. Processing an Indication

If the indication contains unknown comprehension-required attributes,
the indication is discarded and processing ceases.

Petit-Huguenin, et al. Standards Track [Page 18]



REFC 8489 STUN February 2020

Otherwise, the agent then does any additional checking that the
method or the specific usage requires. If all the checks succeed,
the agent then processes the indication. No response is generated
for an indication.

For the Binding method, no additional checking or processing is
required, unless the usage specifies otherwise. The mere receipt of
the message by the agent has refreshed the bindings in the
intervening NATs.

Since indications are not re-transmitted over UDP or DTLS-over-UDP
(unlike requests), there is no need to handle re-transmissions of
indications at the sending agent.

6.3.3. Processing a Success Response

If the success response contains unknown comprehension-required
attributes, the response is discarded and the transaction is
considered to have failed.

Otherwise, the client then does any additional checking that the
method or the specific usage requires. If all the checks succeed,
the client then processes the success response.

For the Binding method, the client checks that the XOR-MAPPED-ADDRESS
attribute is present in the response. The client checks the address
family specified. If it is an unsupported address family, the
attribute SHOULD be ignored. If it is an unexpected but supported
address family (for example, the Binding transaction was sent over
IPv4, but the address family specified is IPv6), then the client MAY
accept and use the value.

6.3.4. Processing an Error Response

If the error response contains unknown comprehension-required
attributes, or if the error response does not contain an ERROR-CODE
attribute, then the transaction is simply considered to have failed.

Otherwise, the client then does any processing specified by the
authentication mechanism (see Section 9). This may result in a new
transaction attempt.

The processing at this point depends on the error code, the method,
and the usage; the following are the default rules:

o If the error code is 300 through 399, the client SHOULD consider

the transaction as failed unless the ALTERNATE-SERVER extension
(Section 10) is being used.

Petit-Huguenin, et al. Standards Track [Page 19]



REFC 8489 STUN February 2020

o If the error code is 400 through 499, the client declares the
transaction failed; in the case of 420 (Unknown Attribute), the
response should contain a UNKNOWN-ATTRIBUTES attribute that gives
additional information.

o If the error code is 500 through 599, the client MAY resend the
request; clients that do so MUST limit the number of times they do
this. Unless a specific error code specifies a different value,
the number of retransmissions SHOULD be limited to 4.

Any other error code causes the client to consider the transaction
failed.

7. FINGERPRINT Mechanism

This section describes an optional mechanism for STUN that aids in
distinguishing STUN messages from packets of other protocols when the
two are multiplexed on the same transport address. This mechanism is
optional, and a STUN Usage must describe if and when it is used. The
FINGERPRINT mechanism is not backwards compatible with RFC 3489 and
cannot be used in environments where such compatibility is required.

In some usages, STUN messages are multiplexed on the same transport
address as other protocols, such as the Real-Time Transport Protocol
(RTP). In order to apply the processing described in Section 6, STUN
messages must first be separated from the application packets.

Section 5 describes three fixed fields in the STUN header that can be
used for this purpose. However, in some cases, these three fixed
fields may not be sufficient.

When the FINGERPRINT extension is used, an agent includes the
FINGERPRINT attribute in messages it sends to another agent.
Section 14.7 describes the placement and value of this attribute.

When the agent receives what it believes is a STUN message, then, in
addition to other basic checks, the agent also checks that the
message contains a FINGERPRINT attribute and that the attribute
contains the correct value. Section 6.3 describes when in the
overall processing of a STUN message the FINGERPRINT check is
performed. This additional check helps the agent detect messages of
other protocols that might otherwise seem to be STUN messages.

8. DNS Discovery of a Server
This section describes an optional procedure for STUN that allows a

client to use DNS to determine the IP address and port of a server.
A STUN Usage must describe if and when this extension is used. To

Petit-Huguenin, et al. Standards Track [Page 20]



REFC 8489 STUN February 2020

use this procedure, the client must know a STUN URI [RFC7064]; the
usage must also describe how the client obtains this URI. Hard-
coding a STUN URI into software is NOT RECOMMENDED in case the domain
name is lost or needs to change for legal or other reasons.

When a client wishes to locate a STUN server on the public Internet
that accepts Binding request/response transactions, the STUN URI
scheme is "stun". When it wishes to locate a STUN server that
accepts Binding request/response transactions over a TLS or DTLS
session, the URI scheme is "stuns".

The syntax of the "stun" and "stuns" URIs is defined in Section 3.1
of [RFC7064]. STUN Usages MAY define additional URI schemes.

8.1. STUN URI Scheme Semantics

If the <host> part of a "stun" URI contains an IP address, then this
IP address is used directly to contact the server. A "stuns" URI
containing an IP address MUST be rejected. A future STUN extension
or usage may relax this requirement, provided it demonstrates how to
authenticate the STUN server and prevent man-in-the-middle attacks.

If the URI does not contain an IP address, the domain name contained
in the <host> part is resolved to a transport address using the SRV

procedures specified in [RFC2782]. The DNS SRV service name is the

content of the <scheme> part. The protocol in the SRV lookup is the
transport protocol the client will run STUN over: "udp" for UDP and

"tcp" for TCP.

The procedures of RFC 2782 are followed to determine the server to
contact. RFC 2782 spells out the details of how a set of SRV records
is sorted and then tried. However, RFC 2782 only states that the
client should "try to connect to the (protocol, address, service)"
without giving any details on what happens in the event of failure.
When following these procedures, if the STUN transaction times out
without receipt of a response, the client SHOULD retry the request to
the next server in the order defined by RFC 2782. Such a retry is
only possible for request/response transmissions, since indication
transactions generate no response or timeout.

In addition, instead of querying either the A or the AAAA resource
records for a domain name, a dual-stack IPv4/IPv6 client MUST query
both and try the requests with all the IP addresses received, as
specified in [RFC8305].

The default port for STUN requests is 3478, for both TCP and UDP.

The default port for STUN over TLS and STUN over DTLS requests is
5349. Servers can run STUN over DTLS on the same port as STUN over

Petit-Huguenin, et al. Standards Track [Page 21]



REFC 8489 STUN February 2020

UDP if the server software supports determining whether the initial
message i1s a DTLS or STUN message. Servers can run STUN over TLS on
the same port as STUN over TCP if the server software supports
determining whether the initial message is a TLS or STUN message.

Administrators of STUN servers SHOULD use these ports in their SRV
records for UDP and TCP. In all cases, the port in DNS MUST reflect
the one on which the server is listening.

If no SRV records are found, the client performs both an A and AAAA
record lookup of the domain name, as described in [RFC8305]. The
result will be a list of IP addresses, each of which can be
simultaneously contacted at the default port using UDP or TCP,
independent of the STUN Usage. For usages that require TLS, the
client connects to the IP addresses using the default STUN over TLS
port. For usages that require DTLS, the client connects to the IP
addresses using the default STUN over DTLS port.

9. Authentication and Message-Integrity Mechanisms

This section defines two mechanisms for STUN that a client and server
can use to provide authentication and message integrity; these two
mechanisms are known as the short-term credential mechanism and the
long-term credential mechanism. These two mechanisms are optional,
and each usage must specify if and when these mechanisms are used.
Consequently, both clients and servers will know which mechanism (if
any) to follow based on knowledge of which usage applies. For
example, a STUN server on the public Internet supporting ICE would
have no authentication, whereas the STUN server functionality in an
agent supporting connectivity checks would utilize short-term
credentials. An overview of these two mechanisms is given in
Section 2.

Each mechanism specifies the additional processing required to use
that mechanism, extending the processing specified in Section 6. The
additional processing occurs in three different places: when forming
a message, when receiving a message immediately after the basic
checks have been performed, and when doing the detailed processing of
error responses.

Note that agents MUST ignore all attributes that follow MESSAGE-
INTEGRITY, with the exception of the MESSAGE-INTEGRITY-SHA256 and
FINGERPRINT attributes. Similarly, agents MUST ignore all attributes
that follow the MESSAGE-INTEGRITY-SHA256 attribute if the MESSAGE-
INTEGRITY attribute is not present, with the exception of the
FINGERPRINT attribute.

Petit-Huguenin, et al. Standards Track [Page 22]



REFC 8489 STUN February 2020

9.1. Short-Term Credential Mechanism

The short-term credential mechanism assumes that, prior to the STUN
transaction, the client and server have used some other protocol to
exchange a credential in the form of a username and password. This
credential is time-limited. The time limit is defined by the usage.
As an example, in the ICE usage [RFC8445], the two endpoints use out-
of-band signaling to agree on a username and password, and this
username and password are applicable for the duration of the media
session.

This credential is used to form a message—-integrity check in each
request and in many responses. There is no challenge and response as
in the long-term mechanism; consequently, replay is limited by wvirtue
of the time-limited nature of the credential.

9.1.1. HMAC Key

For short-term credentials, the Hash-Based Message Authentication
Code (HMAC) key is defined as follow:

key = OpaqueString (password)

where the OpaqueString profile is defined in [RFC8265]. The encoding
used is UTF-8 [RFC3629].

9.1.2. Forming a Request or Indication

For a request or indication message, the agent MUST include the
USERNAME, MESSAGE-INTEGRITY-SHA256, and MESSAGE-INTEGRITY attributes
in the message unless the agent knows from an external mechanism
which message integrity algorithm is supported by both agents. 1In
this case, either MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 MUST
be included in addition to USERNAME. The HMAC for the MESSAGE-
INTEGRITY attribute is computed as described in Section 14.5, and the
HMAC for the MESSAGE-INTEGRITY-SHA256 attributes is computed as
described in Section 14.6. Note that the password is never included
in the request or indication.

9.1.3. Receiving a Request or Indication

After the agent has done the basic processing of a message, the agent
performs the checks listed below in the order specified:

o If the message does not contain 1) a MESSAGE-INTEGRITY or a
MESSAGE-INTEGRITY-SHA256 attribute and 2) a USERNAME attribute:

Petit-Huguenin, et al. Standards Track [Page 23]



REFC 8489 STUN February 2020

* If the message is a request, the server MUST reject the request
with an error response. This response MUST use an error code
of 400 (Bad Request).

* If the message is an indication, the agent MUST silently
discard the indication.

o If the USERNAME does not contain a username value currently valid
within the server:

* If the message is a request, the server MUST reject the request
with an error response. This response MUST use an error code
of 401 (Unauthenticated).

* TIf the message is an indication, the agent MUST silently
discard the indication.

o If the MESSAGE-INTEGRITY-SHA256 attribute is present, compute the
value for the message integrity as described in Section 14.6,
using the password associated with the username. If the MESSAGE-
INTEGRITY-SHA256 attribute is not present, then use the same
password to compute the value for the message integrity as
described in Section 14.5. TIf the resulting value does not match
the contents of the corresponding attribute (MESSAGE-INTEGRITY-
SHA256 or MESSAGE-INTEGRITY) :

* TIf the message is a request, the server MUST reject the request
with an error response. This response MUST use an error code
of 401 (Unauthenticated).

* If the message is an indication, the agent MUST silently
discard the indication.

If these checks pass, the agent continues to process the request or
indication. Any response generated by a server to a request that
contains a MESSAGE-INTEGRITY-SHA256 attribute MUST include the
MESSAGE-INTEGRITY-SHA256 attribute, computed using the password
utilized to authenticate the request. Any response generated by a
server to a request that contains only a MESSAGE-INTEGRITY attribute
MUST include the MESSAGE-INTEGRITY attribute, computed using the
password utilized to authenticate the request. This means that only
one of these attributes can appear in a response. The response MUST
NOT contain the USERNAME attribute.

Petit-Huguenin, et al. Standards Track [Page 24]



REFC 8489 STUN February 2020

If any of the checks fail, a server MUST NOT include a MESSAGE-
INTEGRITY-SHA256, MESSAGE-INTEGRITY, or USERNAME attribute in the
error response. This is because, in these failure cases, the server
cannot determine the shared secret necessary to compute the MESSAGE-
INTEGRITY-SHA256 or MESSAGE-INTEGRITY attributes.

9.1.4. Receiving a Response

The client looks for the MESSAGE-INTEGRITY or the MESSAGE-INTEGRITY-
SHA256 attribute in the response. If present and if the client only
sent one of the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
attributes in the request (because of the external indication in
Section 9.1.2 or because this is a subsequent request as defined in
Section 9.1.5), the algorithm in the response has to match;
otherwise, the response MUST be discarded.

The client then computes the message integrity over the response as
defined in Section 14.5 for the MESSAGE-INTEGRITY attribute or
Section 14.6 for the MESSAGE-INTEGRITY-SHA256 attribute, using the
same password it utilized for the request. If the resulting value
matches the contents of the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-
SHA256 attribute, respectively, the response is considered
authenticated. If the value does not match, or if both MESSAGE-
INTEGRITY and MESSAGE-INTEGRITY-SHA256 are absent, the processing
depends on whether the request was sent over a reliable or an
unreliable transport.

If the request was sent over an unreliable transport, the response
MUST be discarded, as if it had never been received. This means that
retransmits, if applicable, will continue. If all the responses
received are discarded, then instead of signaling a timeout after
ending the transaction, the layer MUST signal that the integrity
protection was violated.

If the request was sent over a reliable transport, the response MUST
be discarded, and the layer MUST immediately end the transaction and
signal that the integrity protection was violated.

9.1.5. Sending Subsequent Requests

A client sending subsequent requests to the same server MUST send
only the MESSAGE-INTEGRITY-SHA256 or the MESSAGE-INTEGRITY attribute
that matches the attribute that was received in the response to the
initial request. Here, "same server" means same IP address and port
number, not just the same URI or SRV lookup result.

Petit-Huguenin, et al. Standards Track [Page 25]



REFC 8489 STUN February 2020

9.2. Long-Term Credential Mechanism

The long-term credential mechanism relies on a long-term credential,
in the form of a username and password that are shared between client
and server. The credential is considered long-term since it is
assumed that it is provisioned for a user and remains in effect until
the user is no longer a subscriber of the system or until it is
changed. This is basically a traditional "log-in" username and
password given to users.

Because these usernames and passwords are expected to be valid for
extended periods of time, replay prevention is provided in the form
of a digest challenge. 1In this mechanism, the client initially sends
a request, without offering any credentials or any integrity checks.
The server rejects this request, providing the user a realm (used to
guide the user or agent in selection of a username and password) and
a nonce. The nonce provides a limited replay protection. It is a
cookie, selected by the server and encoded in such a way as to
indicate a duration of wvalidity or client identity from which it is
valid. Only the server needs to know about the internal structure of
the cookie. The client retries the request, this time including its
username and the realm and echoing the nonce provided by the server.
The client also includes one of the message-integrity attributes
defined in this document, which provides an HMAC over the entire
request, including the nonce. The server validates the nonce and
checks the message integrity. If they match, the request is
authenticated. If the nonce is no longer valid, it is considered
"stale", and the server rejects the request, providing a new nonce.

In subsequent requests to the same server, the client reuses the
nonce, username, realm, and password it used previously. In this
way, subsequent requests are not rejected until the nonce becomes
invalid by the server, in which case the rejection provides a new
nonce to the client.

Note that the long-term credential mechanism cannot be used to
protect indications, since indications cannot be challenged. Usages
utilizing indications must either use a short-term credential or omit
authentication and message integrity for them.

To indicate that it supports this specification, a server MUST
prepend the NONCE attribute value with the character string composed
of "obMatJos2" concatenated with the (4-character) base64 [RFC4648]
encoding of the 24-bit STUN Security Features as defined in

Section 18.1. The 24-bit Security Feature set is encoded as 3 bytes,
with bit 0 as the most significant bit of the first byte and bit 23
as the least significant bit of the third byte. If no security
features are used, then a byte array with all 24 bits set to zero

Petit-Huguenin, et al. Standards Track [Page 26]



REFC 8489 STUN February 2020

MUST be encoded instead. For the remainder of this document, the
term "nonce cookie" will refer to the complete 13-character string
prepended to the NONCE attribute value.

Since the long-term credential mechanism is susceptible to offline
dictionary attacks, deployments SHOULD utilize passwords that are
difficult to guess. In cases where the credentials are not entered
by the user, but are rather placed on a client device during device
provisioning, the password SHOULD have at least 128 bits of
randomness. In cases where the credentials are entered by the user,
they should follow best current practices around password structure.

9.2.1. Bid-Down Attack Prevention

This document introduces two new security features that provide the
ability to choose the algorithm used for password protection as well
as the ability to use an anonymous username. Both of these
capabilities are optional in order to remain backwards compatible
with previous versions of the STUN protocol.

These new capabilities are subject to bid-down attacks whereby an

attacker in the message path can remove these capabilities and force
weaker security properties. To prevent these kinds of attacks from
going undetected, the nonce is enhanced with additional information.

The value of the "nonce cookie" will vary based on the specific STUN
Security Feature bits selected. When this document makes reference
to the "nonce cookie" in a section discussing a specific STUN
Security Feature it is understood that the corresponding STUN
Security Feature bit in the "nonce cookie" is set to 1.

For example, when the PASSWORD-ALGORITHMS security feature (defined
in Section 9.2.4) is used, the corresponding "Password algorithms"
bit (defined in Section 18.1) is set to 1 in the "nonce cookie".

9.2.2. HMAC Key

For long-term credentials that do not use a different algorithm, as
specified by the PASSWORD-ALGORITHM attribute, the key is 16 bytes:

key = MD5 (username ":" OpaqueString(realm)
":" OpaqueString (password))

Where MD5 is defined in [RFC1321] and [RFC6151], and the OpaqueString

profile is defined in [RFC8265]. The encoding used is UTF-8
[RFC3629].

Petit-Huguenin, et al. Standards Track [Page 27]



REFC 8489 STUN February 2020

The 16-byte key is formed by taking the MD5 hash of the result of
concatenating the following five fields: (1) the username, with any
quotes and trailing nulls removed, as taken from the USERNAME
attribute (in which case OpaqueString has already been applied); (2)
a single colon; (3) the realm, with any quotes and trailing nulls
removed and after processing using OpaqueString; (4) a single colon;
and (5) the password, with any trailing nulls removed and after
processing using OpaqueString. For example, if the username is
"user’, the realm is 'realm’, and the password is ’pass’, then the
l6-byte HMAC key would be the result of performing an MD5 hash on the
string ’'user:realm:pass’, the resulting hash being
0x8493fbc53ba582fb4c044c456bdc40eb.

The structure of the key when used with long-term credentials
facilitates deployment in systems that also utilize SIP [RFC3261].
Typically, SIP systems utilizing SIP’s digest authentication
mechanism do not actually store the password in the database.
Rather, they store a value called "H(Al)", which is equal to the key
defined above. For example, this mechanism can be used with the
authentication extensions defined in [RFC5090].

When a PASSWORD-ALGORITHM is used, the key length and algorithm to
use are described in Section 18.5.1.

9.2.3. Forming a Request

The first request from the client to the server (as identified by
hostname if the DNS procedures of Section 8 are used and by IP
address if not) is handled according to the rules in Section 9.2.3.1.
When the client initiates a subsequent request once a previous
request/response transaction has completed successfully, it follows
the rules in Section 9.2.3.2. Forming a request as a consequence of
a 401 (Unauthenticated) or 438 (Stale Nonce) error response is
covered in Section 9.2.5 and is not considered a "subsequent request"
and thus does not utilize the rules described in Section 9.2.3.2.
Each of these types of requests have a different mandatory
attributes.

9.2.3.1. First Request

If the client has not completed a successful request/response
transaction with the server, it MUST omit the USERNAME, USERHASH,
MESSAGE-INTEGRITY, MESSAGE-INTEGRITY-SHA256, REALM, NONCE, PASSWORD-
ALGORITHMS, and PASSWORD-ALGORITHM attributes. In other words, the
first request is sent as if there were no authentication or message
integrity applied.

Petit-Huguenin, et al. Standards Track [Page 28]



REFC 8489 STUN February 2020

9.2.3.2. Subsequent Requests

Once a request/response transaction has completed, the client will
have been presented a realm and nonce by the server and selected a
username and password with which it authenticated. The client SHOULD
cache the username, password, realm, and nonce for subsequent
communications with the server. When the client sends a subsequent
request, it MUST include either the USERNAME or USERHASH, REALM,
NONCE, and PASSWORD-ALGORITHM attributes with these cached values.

It MUST include a MESSAGE-INTEGRITY attribute or a MESSAGE-INTEGRITY-
SHA256 attribute, computed as described in Sections 14.5 and 14.6

using the cached password. The choice between the two attributes
depends on the attribute received in the response to the first
request.

9.2.4. Receiving a Request

After the server has done the basic processing of a request, it
performs the checks listed below in the order specified. ©Note that
it is RECOMMENDED that the REALM value be the domain name of the
provider of the STUN server:

o If the message does not contain a MESSAGE-INTEGRITY or MESSAGE-
INTEGRITY-SHA256 attribute, the server MUST generate an error
response with an error code of 401 (Unauthenticated). This
response MUST include a REALM value. The response MUST include a
NONCE, selected by the server. The server MUST NOT choose the
same NONCE for two requests unless they have the same source IP
address and port. The server MAY support alternate password
algorithms, in which case it can list them in preferential order
in a PASSWORD-ALGORITHMS attribute. TIf the server adds a
PASSWORD-ALGORITHMS attribute, it MUST set the STUN Security

Feature "Password algorithms" bit to 1. The server MAY support
anonymous username, in which case it MUST set the STUN Security
Feature "Username anonymity" bit set to 1. The response SHOULD

NOT contain a USERNAME, USERHASH, MESSAGE-INTEGRITY, or MESSAGE-
INTEGRITY-SHA256 attribute.

Note: Reusing a NONCE for different source IP addresses or ports
was not explicitly forbidden in [RFC5389].

o If the message contains a MESSAGE-INTEGRITY or a MESSAGE-
INTEGRITY-SHA256 attribute, but is missing either the USERNAME or
USERHASH, REALM, or NONCE attribute, the server MUST generate an
error response with an error code of 400 (Bad Request). This
response SHOULD NOT include a USERNAME, USERHASH, NONCE, or REALM

Petit-Huguenin, et al. Standards Track [Page 29]



REFC 8489 STUN February 2020

attribute. The response cannot contain a MESSAGE-INTEGRITY or
MESSAGE-INTEGRITY-SHA256 attribute, as the attributes required to
generate them are missing.

o If the NONCE attribute starts with the "nonce cookie"™ with the
STUN Security Feature "Password algorithms" bit set to 1, the
server performs these checks in the order specified:

* If the request contains neither the PASSWORD-ALGORITHMS nor the
PASSWORD-ALGORITHM algorithm, then the request is processed as
though PASSWORD-ALGORITHM were MD5.

*  Otherwise, unless (1) PASSWORD-ALGORITHM and PASSWORD-
ALGORITHMS are both present, (2) PASSWORD-ALGORITHMS matches
the value sent in the response that sent this NONCE, and (3)
PASSWORD-ALGORITHM matches one of the entries in PASSWORD-
ALGORITHMS, the server MUST generate an error response with an
error code of 400 (Bad Request).

o If the value of the USERNAME or USERHASH attribute is not wvalid,
the server MUST generate an error response with an error code of
401 (Unauthenticated). This response MUST include a REALM value.
The response MUST include a NONCE, selected by the server. The
response MUST include a PASSWORD-ALGORITHMS attribute. The
response SHOULD NOT contain a USERNAME or USERHASH attribute. The
response MAY include a MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-
SHA256 attribute, using the previous key to calculate it.

o If the MESSAGE-INTEGRITY-SHA256 attribute is present, compute the
value for the message integrity as described in Section 14.6,
using the password associated with the username. Otherwise, using
the same password, compute the value for the MESSAGE-INTEGRITY
attribute as described in Section 14.5. TIf the resulting value
does not match the contents of the MESSAGE-INTEGRITY attribute or
the MESSAGE-INTEGRITY-SHA256 attribute, the server MUST reject the
request with an error response. This response MUST use an error
code of 401 (Unauthenticated). It MUST include the REALM and
NONCE attributes and SHOULD NOT include the USERNAME, USERHASH,
MESSAGE-INTEGRITY, or MESSAGE-INTEGRITY-SHA256 attribute.

o If the NONCE is no longer valid, the server MUST generate an error
response with an error code of 438 (Stale Nonce). This response
MUST include NONCE, REALM, and PASSWORD-ALGORITHMS attributes and
SHOULD NOT include the USERNAME and USERHASH attributes. The
NONCE attribute value MUST be valid. The response MAY include a
MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 attribute, using the

Petit-Huguenin, et al. Standards Track [Page 30]



REFC 8489 STUN February 2020

previous NONCE to calculate it. Servers can revoke nonces in
order to provide additional security. See Section 5.4 of
[REC7616] for guidelines.

If these checks pass, the server continues to process the request.
Any response generated by the server MUST include the MESSAGE-
INTEGRITY-SHA256 attribute, computed using the username and password
utilized to authenticate the request, unless the request was
processed as though PASSWORD-ALGORITHM was MD5 (because the request
contained neither PASSWORD-ALGORITHMS nor PASSWORD-ALGORITHM) . In
that case, the MESSAGE-INTEGRITY attribute MUST be used instead of
the MESSAGE-INTEGRITY-SHA256 attribute, and the REALM, NONCE,
USERNAME, and USERHASH attributes SHOULD NOT be included.

9.2.5. Receiving a Response

If the response is an error response with an error code of 401
(Unauthenticated) or 438 (Stale Nonce), the client MUST test if the
NONCE attribute value starts with the "nonce cookie”". TIf so and the
"nonce cookie" has the STUN Security Feature "Password algorithms"
bit set to 1 but no PASSWORD-ALGORITHMS attribute is present, then
the client MUST NOT retry the request with a new transaction.

If the response is an error response with an error code of 401
(Unauthenticated), the client SHOULD retry the request with a new
transaction. This request MUST contain a USERNAME or a USERHASH,
determined by the client as the appropriate username for the REALM
from the error response. If the "nonce cookie" is present and has
the STUN Security Feature "Username anonymity" bit set to 1, then the
USERHASH attribute MUST be used; else, the USERNAME attribute MUST be
used. The request MUST contain the REALM, copied from the error
response. The request MUST contain the NONCE, copied from the error
response. If the response contains a PASSWORD-ALGORITHMS attribute,
the request MUST contain the PASSWORD-ALGORITHMS attribute with the
same content. If the response contains a PASSWORD-ALGORITHMS
attribute, and this attribute contains at least one algorithm that is
supported by the client, then the request MUST contain a PASSWORD-
ALGORITHM attribute with the first algorithm supported on the list.
If the response contains a PASSWORD-ALGORITHMS attribute, and this
attribute does not contain any algorithm that is supported by the
client, then the client MUST NOT retry the request with a new
transaction. The client MUST NOT perform this retry if it is not
changing the USERNAME, USERHASH, REALM, or its associated password
from the previous attempt.

Petit-Huguenin, et al. Standards Track [Page 31]



REFC 8489 STUN February 2020

If the response is an error response with an error code of 438 (Stale
Nonce), the client MUST retry the request, using the new NONCE
attribute supplied in the 438 (Stale Nonce) response. This retry
MUST also include either the USERNAME or USERHASH, the REALM, and
either the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256 attribute.

For all other responses, if the NONCE attribute starts with the
"nonce cookie" with the STUN Security Feature "Password algorithms"
bit set to 1 but PASSWORD-ALGORITHMS is not present, the response
MUST be ignored.

If the response is an error response with an error code of 400 (Bad
Request) and does not contain either the MESSAGE-INTEGRITY or
MESSAGE-INTEGRITY-SHA256 attribute, then the response MUST be
discarded, as if it were never received. This means that
retransmits, if applicable, will continue.

Note: In this case, the 400 response will never reach the
application, resulting in a timeout.

The client looks for the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-
SHA256 attribute in the response (either success or failure). If
present, the client computes the message integrity over the response
as defined in Sections 14.5 or 14.6, using the same password it
utilized for the request. 1If the resulting value matches the
contents of the MESSAGE-INTEGRITY or MESSAGE-INTEGRITY-SHA256
attribute, the response is considered authenticated. If the value
does not match, or if both MESSAGE-INTEGRITY and MESSAGE-INTEGRITY-
SHA256 are absent, the processing depends on the request being sent
over a reliable or an unreliable transport.

If the request was sent over an unreliable transport, the response
MUST be discarded, as if it had never been received. This means that
retransmits, if applicable, will continue. If all the responses
received are discarded, then instead of signaling a timeout after
ending the transaction, the layer MUST signal that the integrity
protection was violated.

If the request was sent over a reliable transport, the response MUST
be discarded, and the layer MUST immediately end the transaction and
signal that the integrity protection was violated.

If the response contains a PASSWORD-ALGORITHMS attribute, all the

subsequent requests MUST be authenticated using MESSAGE-INTEGRITY-
SHA256 only.

Petit-Huguenin, et al. Standar