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1. Introduction
Van Jacobson's packet conservation principle  defines a self clock process wherein
N data segments delivered to the receiver generate acknowledgments that the data sender uses
as the clock to trigger sending another N data segments into the network.

Congestion control algorithms like Reno  and CUBIC  are built on the
conceptual foundation of this self clock process. They control the sending process of a transport
protocol connection by using a congestion window ("cwnd") to limit "inflight", the volume of
data that a connection estimates is in flight in the network at a given time. Furthermore, these
algorithms require that transport protocol connections reduce their cwnd in response to packet
losses. Fast recovery (see  and ) is the algorithm for making this cwnd
reduction using feedback from acknowledgments. Its stated goal is to maintain a sender's self
clock by relying on returning ACKs during recovery to clock more data into the network.
Without Proportional Rate Reduction (PRR), fast recovery typically adjusts the window by
waiting for a large fraction of a round-trip time (RTT) (one half round-trip time of ACKs for Reno 

 or 30% of a round-trip time for CUBIC ) to pass before sending any data.

 makes fast recovery with Selective Acknowledgment (SACK)  more accurate
by computing "pipe", a sender-side estimate of the number of bytes still outstanding in the
network. With , fast recovery is implemented by sending data as necessary on each
ACK to allow pipe to rise to match ssthresh, the target window size for fast recovery, as
determined by the congestion control algorithm. This protects fast recovery from timeouts in
many cases where there are heavy losses. However,  has two significant drawbacks.
First, because it makes a large multiplicative decrease in cwnd at the start of fast recovery, it can
cause a timeout if the entire second half of the window of data or ACKs are lost. Second, a single
ACK carrying a SACK option that implies a large quantity of missing data can cause a step
discontinuity in the pipe estimator, which can cause Fast Retransmit to send a large burst of data.

PRR regulates the transmission process during fast recovery in a manner that avoids these
excess window adjustments, such that transmissions progress smoothly, and at the end of
recovery, the actual window size will be as close as possible to ssthresh.

PRR's approach is inspired by Van Jacobson's packet conservation principle. As much as possible,
PRR relies on the self clock process and is only slightly affected by the accuracy of estimators,
such as the estimate of the volume of in-flight data. This is what gives the algorithm its precision
in the presence of events that cause uncertainty in other estimators.

When inflight is above ssthresh, PRR reduces inflight smoothly toward ssthresh by clocking out
transmissions at a rate that is in proportion to both the delivered data and ssthresh.

When inflight is less than ssthresh, PRR adaptively chooses between one of two Reduction
Bounds to limit the total window reduction due to all mechanisms, including transient
application stalls and the losses themselves. As a baseline, to be cautious when there may be
considerable congestion, PRR uses its Conservative Reduction Bound (PRR-CRB), which is strictly
packet conserving. When recovery seems to be progressing well, PRR uses its Slow Start

[Jacobson88]

[RFC5681] [RFC9438]

[RFC5681] [RFC6675]

[RFC5681] [RFC9438]

[RFC6675] [RFC2018]

[RFC6675]

[RFC6675]
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SND.UNA:

SND.NXT:

Reduction Bound (PRR-SSRB), which is more aggressive than PRR-CRB by at most one segment
per ACK. PRR-CRB meets the Strong Packet Conservation Bound described in Appendix A;
however, when used in real networks as the sole approach, it does not perform as well as the
algorithm described in , which proves to be more aggressive in a significant number
of cases. PRR-SSRB offers a compromise by allowing a connection to send one additional
segment per ACK, relative to PRR-CRB, in some situations. Although PRR-SSRB is less aggressive
than  (transmitting fewer segments or taking more time to transmit them), it
outperforms due to the lower probability of additional losses during recovery.

The original definition of the packet conservation principle  treated packets that are
presumed to be lost (e.g., marked as candidates for retransmission) as having left the network.
This idea is reflected in the inflight estimator used by PRR, but it is distinct from the Strong
Packet Conservation Bound as described in Appendix A, which is defined solely on the basis of
data arriving at the receiver.

This document specifies several main changes from the earlier version of PRR in .
First, it introduces a new adaptive heuristic that replaces a manual configuration parameter that
determined how conservative PRR was when inflight was less than ssthresh (whether to use PRR-
CRB or PRR-SSRB). Second, the algorithm specifies behavior for non-SACK connections
(connections that have not negotiated SACK  support via the "SACK-permitted" option).
Third, the algorithm ensures a smooth sending process even when the sender has experienced
high reordering and starts loss recovery after a large amount of sequence space has been
SACKed. Finally, this document also includes additional discussion about the integration of PRR
with congestion control and loss detection algorithms.

PRR has extensive deployment experience in multiple TCP implementations since the first
widely deployed TCP PRR implementation in 2011 .

2. Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14  when, and only when, they appear in
all capitals, as shown here.

3. Definitions
The following terms, parameters, and state variables are used as they are defined in earlier
documents:

The oldest unacknowledged sequence number. This is defined in 
. 

The next sequence number to be sent. This is defined in . 

[RFC6675]

[RFC6675]

[Jacobson88]

[RFC6937]

[RFC2018]

[First_TCP_PRR]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Section 3.4 of
[RFC9293]

Section 3.4 of [RFC9293]
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duplicate ACK:

FlightSize:

Receiver Maximum Segment Size (RMSS):

Sender Maximum Segment Size (SMSS):

Receiver Window (rwnd):

Congestion Window (cwnd):

Slow Start Threshold (ssthresh):

Delivered Data (DeliveredData):

In-Flight Data (inflight):

Recovery Flight Size (RecoverFS):

An acknowledgment is considered a "duplicate ACK" or "duplicate
acknowledgment" when (a) the receiver of the ACK has outstanding data, (b) the incoming
acknowledgment carries no data, (c) the SYN and FIN bits are both off, (d) the
acknowledgment number is equal to SND.UNA, and (e) the advertised window in the
incoming acknowledgment equals the advertised window in the last incoming
acknowledgment. This is defined in . 

The amount of data that has been sent but not yet cumulatively acknowledged. This
is defined in . 

The RMSS is the size of the largest segment the
receiver is willing to accept. This is the value specified in the MSS option sent by the receiver
during connection startup (see ). Or if the MSS option is not used, it
is the default of 536 bytes for IPv4 or 1220 bytes for IPv6 (see ). The
size does not include the TCP/IP headers and options. The RMSS is defined in 

 and . 

The SMSS is the size of the largest segment that the
sender can transmit. This value can be based on the Maximum Transmission Unit (MTU) of
the network, the path MTU discovery  algorithm, RMSS, or
other factors. The size does not include the TCP/IP headers and options. This is defined in 

. 

The most recently received advertised receiver window, in bytes. At
any given time, a connection  send data with a sequence number higher than the
sum of SND.UNA and rwnd. This is defined in . 

A state variable that limits the amount of data a connection can
send. At any given time, a connection  send data if inflight (see below) matches or
exceeds cwnd. This is defined in . 

The slow start threshold (ssthresh) state variable is used to
determine whether the slow start or congestion avoidance algorithm is used to control data
transmission. During fast recovery, ssthresh is the target window size for a fast recovery
episode, as determined by the congestion control algorithm. This is defined in 

. 

PRR defines additional variables and terms:

The data sender's best estimate of the total number of bytes
that the current ACK indicates have been delivered to the receiver since the previously
received ACK. 

The data sender's best estimate of the number of unacknowledged
bytes in flight in the network, i.e., bytes that were sent and neither lost nor received by the
data receiver. 

The number of bytes the sender estimates might possibly be
delivered over the course of the current PRR episode. 

Section 2 of [RFC5681]

Section 2 of [RFC5681]

Section 3.7.1 of [RFC9293]
Section 3.7.1 of [RFC9293]

Section 2 of
[RFC5681] Section 3.8.6.3 of [RFC9293]

[RFC1191] [RFC8201] [RFC4821]

Section 2 of [RFC5681]

MUST NOT
Section 2 of [RFC5681]

MUST NOT
Section 2 of [RFC5681]

Section 3.1 of
[RFC5681]
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SafeACK:

SndCnt:

Voluntary window reductions:

A local boolean variable indicating that the current ACK indicates the recovery is
making good progress and the sender can send more aggressively, increasing inflight, if
appropriate. 

A local variable indicating exactly how many bytes should be sent in response to each
ACK. 

Choosing not to send data in response to some ACKs, for the
purpose of reducing the sending window size and data rate. 

4. Changes Relative to RFC 6937
The largest change since  is the introduction of a new heuristic that uses good
recovery progress (for TCP, when the latest ACK advances SND.UNA and does not indicate that a
prior fast retransmit has been lost) to select the Reduction Bound (PRR-CRB or PRR-SSRB). 

 left the choice of Reduction Bound to the discretion of the implementer but
recommended to use PRR-SSRB by default. For all of the environments explored in earlier PRR
research, the new heuristic is consistent with the old recommendation.

The paper "An Internet-Wide Analysis of Traffic Policing"  uncovered a
crucial situation not previously explored, where both Reduction Bounds perform very poorly
but for different reasons. Under many configurations, token bucket traffic policers can suddenly
start discarding a large fraction of the traffic when tokens are depleted, without any warning to
the end systems. The transport congestion control has no opportunity to measure the token rate
and sets ssthresh based on the previously observed path performance. This value for ssthresh
may cause a data rate that is substantially larger than the token replenishment rate, causing
high loss. Under these conditions, both Reduction Bounds perform very poorly. PRR-CRB is too
timid, sometimes causing very long recovery times at smaller than necessary windows, and PRR-
SSRB is too aggressive, often causing many retransmissions to be lost for multiple rounds. Both
cases lead to prolonged recovery, decimating application latency and/or goodput.

Investigating these environments led to the development of a "SafeACK" heuristic to dynamically
switch between Reduction Bounds: by default, conservatively use PRR-CRB and only switch to
PRR-SSRB when ACKs indicate the recovery is making good progress (SND.UNA is advancing
without detecting any new losses). The SafeACK heuristic was experimented with in Google's
Content Delivery Network (CDN)  and implemented in Linux TCP since 2015.

This SafeACK heuristic is only invoked where losses, application-limited behavior, or other
events cause the current estimate of in-flight data to fall below ssthresh. The high loss rates that
make the heuristic essential are only common in the presence of heavy losses, such as traffic
policers . In these environments, the heuristic performs better than either
bound by itself.

Another PRR algorithm change improves the sending process when the sender enters recovery
after a large portion of sequence space has been SACKed. This scenario could happen when the
sender has previously detected reordering, for example, by using . In the previous

[RFC6937]

[RFC6937]

[Flach2016policing]

[Flach2016policing]

[Flach2016policing]

[RFC8985]
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version of PRR, RecoverFS did not properly account for sequence ranges SACKed before entering
fast recovery, which caused PRR to initially send too slowly. With the change, PRR properly
accounts for sequence ranges SACKed before entering fast recovery.

Yet another change is to force a fast retransmit upon the first ACK that triggers the recovery.
Previously, PRR may not allow a fast retransmit (i.e., SndCnt is 0) on the first ACK in fast
recovery, depending on the loss situation. Forcing a fast retransmit is important to maintain the
ACK clock and avoid potential retransmission timeout (RTO) events. The forced fast retransmit
only happens once during the entire recovery and still follows the packet conservation
principles in PRR. This heuristic has been implemented since the first widely deployed TCP PRR
implementation in 2011 .

In another change, upon exiting recovery, a data sender sets cwnd to ssthresh. This is important
for robust performance. Without setting cwnd to ssthresh at the end of recovery and with
application-limited sender behavior and some loss patterns, cwnd could end fast recovery well
below ssthresh, leading to bad performance. The performance could, in some cases, be worse
than  recovery, which simply sets cwnd to ssthresh at the start of recovery. This
behavior of setting cwnd to ssthresh at the end of recovery has been implemented since the first
widely deployed TCP PRR implementation in 2011  and is similar to ,
which specifies setting cwnd to ssthresh at the start of recovery.

Since  was written, PRR has also been adapted to perform multiplicative window
reduction for non-loss-based congestion control algorithms, such as for  style Explicit
Congestion Notification (ECN). This can be done by using some parts of the loss recovery state
machine (in particular, the RecoveryPoint from ) to invoke the PRR ACK processing for
exactly one round trip worth of ACKs. However, note that using PRR for cwnd reductions for ECN

 has been observed, with some approaches to Active Queue Management (AQM), to
cause an excess cwnd reduction during ECN-triggered congestion episodes, as noted in .

5. Relationships to Other Standards
PRR  be used in conjunction with any congestion control algorithm that intends to make a
multiplicative decrease in its sending rate over approximately the time scale of one round-trip
time, as long as the current volume of in-flight data is limited by a congestion window (cwnd)
and the target volume of in-flight data during that reduction is a fixed value given by ssthresh.
In particular, PRR is applicable to both Reno  and CUBIC  congestion control.
PRR is described as a modification to "A Conservative Loss Recovery Algorithm Based on
Selective Acknowledgment (SACK) for TCP" . It is most accurate with SACK 
but does not require SACK.

PRR can be used in conjunction with a wide array of loss detection algorithms. This is because
PRR does not have any dependencies on the details of how a loss detection algorithm estimates
which packets have been delivered and which packets have been lost. Upon the reception of
each ACK, PRR simply needs the loss detection algorithm to communicate how many packets
have been marked as lost and how many packets have been marked as delivered. Thus, PRR 
be used in conjunction with the loss detection algorithms specified or described in the following

[First_TCP_PRR]

[RFC6675]

[First_TCP_PRR] [RFC6675]

[RFC6937]
[RFC3168]

[RFC6675]

[RFC3168]
[VCC]

MAY

[RFC5681] [RFC9438]

[RFC6675] [RFC2018]

MAY
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documents: Reno , NewReno , SACK , Forward Acknowledgment
(FACK) , and Recent Acknowledgment Tail Loss Probe (RACK-TLP) . Because of
the performance properties of RACK-TLP, including resilience to tail loss, reordering, and lost
retransmissions, it is  that PRR is implemented together with RACK-TLP loss
recovery .

The SafeACK heuristic came about as a result of robust Lost Retransmission Detection under
development in an early precursor to . Without Lost Retransmission Detection,
policers that cause very high loss rates are at very high risk of causing retransmission timeouts
because Reno , CUBIC , and  can send retransmissions significantly
above the policed rate.

6. Algorithm

6.1. Initialization Steps
At the beginning of a congestion control response episode initiated by the congestion control
algorithm, a data sender using PRR  initialize the PRR state.

The timing of the start of a congestion control response episode is entirely up to the congestion
control algorithm, and (for example) could correspond to the start of a fast recovery episode, or
a once-per-round-trip reduction when lost retransmits or lost original transmissions are
detected after fast recovery is already in progress.

The PRR initialization allows a congestion control algorithm, CongCtrlAlg(), that might set
ssthresh to something other than FlightSize/2 (including, e.g., CUBIC ).

A key step of PRR initialization is computing Recovery Flight Size (RecoverFS), the number of
bytes the data sender estimates might possibly be delivered over the course of the PRR episode.
This can be thought of as the sum of the following values at the start of the episode: inflight, the
bytes cumulatively acknowledged in the ACK triggering recovery, the bytes SACKed in the ACK
triggering recovery, and the bytes between SND.UNA and SND.NXT that have been marked lost.
The RecoverFS includes losses because losses are marked using heuristics, so some packets
previously marked as lost may ultimately be delivered (without being retransmitted) during
recovery. PRR uses RecoverFS to compute a smooth sending rate. Upon entering fast recovery,
PRR initializes RecoverFS, and RecoverFS remains constant during a given fast recovery episode.

The full sequence of PRR algorithm initialization steps is as follows:

[RFC5681] [RFC6582] [RFC6675]
[FACK] [RFC8985]

RECOMMENDED
[RFC8985]

[RFC8985]

[RFC5681] [RFC9438] [RFC6675]

MUST

[RFC9438]
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6.2. Per-ACK Steps
On every ACK starting or during fast recovery, excluding the ACK that concludes a PRR episode,
PRR executes the following steps.

First, the sender computes DeliveredData, the data sender's best estimate of the total number of
bytes that the current ACK indicates have been delivered to the receiver since the previously
received ACK. With SACK, DeliveredData can be computed precisely as the change in SND.UNA,
plus the (signed) change in SACK. Thus, in the special case when there are no SACKed sequence
ranges in the scoreboard before or after the ACK, DeliveredData is the change in SND.UNA. In
recovery without SACK, DeliveredData is estimated to be 1 SMSS on receiving a duplicate ACK,
and on a subsequent partial or full ACK DeliveredData is the change in SND.UNA, minus 1 SMSS
for each preceding duplicate ACK. Note that without SACK, a poorly behaved receiver that
returns extraneous duplicate ACKs (as described in ) could attempt to artificially
inflate DeliveredData. As a mitigation, if not using SACK, then PRR disallows incrementing
DeliveredData when the total bytes delivered in a PRR episode would exceed the estimated data
outstanding upon entering recovery (RecoverFS).

Next, the sender computes inflight, the data sender's best estimate of the number of bytes that
are in flight in the network. To calculate inflight, connections with SACK enabled and using loss
detection  use the "pipe" algorithm as specified in . SACK-enabled
connections using RACK-TLP loss detection  or other loss detection algorithms 
calculate inflight by starting with SND.NXT - SND.UNA, subtracting out bytes SACKed in the
scoreboard, subtracting out bytes marked lost in the scoreboard, and adding bytes in the
scoreboard that have been retransmitted since they were last marked lost. For non-SACK-
enabled connections, instead of subtracting out bytes SACKed in the SACK scoreboard, senders 

 subtract out: min(RecoverFS, 1 SMSS for each preceding duplicate ACK in the fast recovery
episode); the min() with RecoverFS is to protect against misbehaving receivers .

Next, the sender computes SafeACK, a local boolean variable indicating that the current ACK
reported good progress. SafeACK is true only when the ACK has cumulatively acknowledged new
data and the ACK does not indicate further losses. For example, an ACK triggering "rescue"
retransmission ( , NextSeg() condition 4) may indicate further losses. Both
conditions indicate the recovery is making good progress and the sender can send more
aggressively, increasing inflight, if appropriate.

   ssthresh = CongCtrlAlg()      // Target flight size in recovery
   prr_delivered = 0             // Total bytes delivered in recovery
   prr_out = 0                   // Total bytes sent in recovery
   RecoverFS = SND.NXT - SND.UNA
   // Bytes SACKed before entering recovery will not be
   // marked as delivered during recovery:
   RecoverFS -= (bytes SACKed in scoreboard)
   // Include the (common) case of selectively ACKed bytes:
   RecoverFS += (bytes newly SACKed)
   // Include the (rare) case of cumulatively ACKed bytes:
   RecoverFS += (bytes newly cumulatively acknowledged)

[Savage99]

[RFC6675] MAY [RFC6675]
[RFC8985] MUST

MUST
[Savage99]

Section 4 of [RFC6675]
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Finally, the sender uses DeliveredData, inflight, SafeACK, and other PRR states to compute
SndCnt, a local variable indicating exactly how many bytes should be sent in response to each
ACK and then uses SndCnt to update cwnd.

The full sequence of per-ACK PRR algorithm steps is as follows:

After the sender computes SndCnt and uses it to update cwnd, the sender transmits more data.
Note that the decision of which data to send (e.g., retransmit missing data or send more new
data) is out of scope for this document.

6.3. Per-Transmit Steps
On any data transmission or retransmission, PRR executes the following:

6.4. Completion Steps
A PRR episode ends upon either completing fast recovery or before initiating a new PRR episode
due to a new congestion control response episode.

   if (DeliveredData is 0)
      Return

   prr_delivered += DeliveredData
   inflight = (estimated volume of in-flight data)
   SafeACK = (SND.UNA advances and no further loss indicated)
   if (inflight > ssthresh) {
      // Proportional Rate Reduction
      // This uses integer division, rounding up:
      #define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
      out = DIV_ROUND_UP(prr_delivered * ssthresh, RecoverFS)
      SndCnt = out - prr_out
   } else {
      // PRR-CRB by default
      SndCnt = MAX(prr_delivered - prr_out, DeliveredData)
      if (SafeACK) {
         // PRR-SSRB when recovery is making good progress
         SndCnt += SMSS
      }
      // Attempt to catch up, as permitted
      SndCnt = MIN(ssthresh - inflight, SndCnt)
   }

   if (prr_out is 0 AND SndCnt is 0) {
      // Force a fast retransmit upon entering recovery
      SndCnt = SMSS
   }
   cwnd = inflight + SndCnt

   prr_out += (data sent)
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On the completion of a PRR episode, PRR executes the following:

Note that this step that sets cwnd to ssthresh can potentially, in some scenarios, allow a burst of
back-to-back segments into the network.

It is  that implementations use pacing to reduce the burstiness of data traffic.
This recommendation is consistent with current practice to mitigate bursts (e.g., ),
including pacing transmission bursts after restarting from idle.

7. Properties
The following properties are common to both PRR-CRB and PRR-SSRB, except as noted:

PRR attempts to maintain the sender's ACK clocking across recovery events, including burst
losses. By contrast,  can send large, unclocked bursts following burst losses.

Normally, PRR will spread voluntary window reductions out evenly across a full RTT. This has
the potential to generally reduce the burstiness of Internet traffic and could be considered to be
a type of soft pacing. Hypothetically, any pacing increases the probability that different flows are
interleaved, reducing the opportunity for ACK compression and other phenomena that increase
traffic burstiness. However, these effects have not been quantified.

If there are minimal losses, PRR will converge to exactly the target window chosen by the
congestion control algorithm. Note that as the sender approaches the end of recovery,
prr_delivered will approach RecoverFS and SndCnt will be computed such that prr_out
approaches ssthresh.

Implicit window reductions, due to multiple isolated losses during recovery, cause later
voluntary reductions to be skipped. For small numbers of losses, the window size ends at exactly
the window chosen by the congestion control algorithm.

For burst losses, earlier voluntary window reductions can be undone by sending extra segments
in response to ACKs arriving later during recovery. Note that as long as some voluntary window
reductions are not undone, and there is no application stall, the final value for inflight will be
the same as ssthresh.

PRR using either Reduction Bound improves the situation when there are application stalls, e.g.,
when the sending application does not queue data for transmission quickly enough or the
receiver stops advancing its receive window. When there is an application stall early during
recovery, prr_out will fall behind the sum of transmissions allowed by SndCnt. The missed
opportunities to send due to stalls are treated like banked voluntary window reductions;
specifically, they cause prr_delivered - prr_out to be significantly positive. If the application
catches up while the sender is still in recovery, the sender will send a partial window burst to
grow inflight to catch up to exactly where it would have been had the application never stalled.

   cwnd = ssthresh

RECOMMENDED
[PACING]

[RFC6675]
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Although such a burst could negatively impact the given flow or other sharing flows, this is
exactly what happens every time there is a partial-RTT application stall while not in recovery.
PRR makes partial-RTT stall behavior uniform in all states. Changing this behavior is out of scope
for this document.

PRR with Reduction Bound is less sensitive to errors in the inflight estimator. While in recovery,
inflight is intrinsically an estimator, using incomplete information to estimate if un-SACKed
segments are actually lost or merely out of order in the network. Under some conditions, inflight
can have significant errors; for example, inflight is underestimated when a burst of reordered
data is prematurely assumed to be lost and marked for retransmission. If the transmissions are
regulated directly by inflight as they are with , a step discontinuity in the inflight
estimator causes a burst of data, which cannot be retracted once the inflight estimator is
corrected a few ACKs later. For PRR dynamics, inflight merely determines which algorithm, PRR
or the Reduction Bound, is used to compute SndCnt from DeliveredData. While inflight is
underestimated, the algorithms are different by at most 1 segment per ACK. Once inflight is
updated, they converge to the same final window at the end of recovery.

Under all conditions and sequences of events during recovery, PRR-CRB strictly bounds the data
transmitted to be equal to or less than the amount of data delivered to the receiver. This Strong
Packet Conservation Bound is the most aggressive algorithm that does not lead to additional
forced losses in some environments. It has the property that if there is a standing queue at a
bottleneck with no cross traffic, the queue will maintain exactly constant length for the duration
of the recovery, except for +1/-1 fluctuation due to differences in packet arrival and exit times.
See Appendix A for a detailed discussion of this property.

Although the Strong Packet Conservation Bound is very appealing for a number of reasons,
earlier measurements (in ) demonstrate that it is less aggressive and does
not perform as well as , which permits bursts of data when there are bursts of losses.
PRR-SSRB is a compromise that permits a sender to send one extra segment per ACK as
compared to the Packet Conserving Bound when the ACK indicates the recovery is in good
progress without further losses. From the perspective of a strict Packet Conserving Bound, PRR-
SSRB does indeed open the window during recovery; however, it is significantly less aggressive
than  in the presence of burst losses. The  "half window of silence" may
temporarily reduce queue pressure when congestion control does not reduce the congestion
window entering recovery to avoid further losses. The goal of PRR is to minimize the
opportunities to lose the self clock by smoothly controlling inflight toward the target set by the
congestion control. It is the congestion control's responsibility to avoid a full queue, not PRR.

8. Examples
This section illustrates the PRR and  algorithm by showing their different behaviors
for two example scenarios: a connection experiencing either a single loss or a burst of 15
consecutive losses. All cases use bulk data transfers (no application pauses), Reno congestion
control , and cwnd = FlightSize = inflight = 20 segments, so ssthresh will be set to 10 at

[RFC6675]

Section 6 of [RFC6675]
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the beginning of recovery. The scenarios use standard Fast Retransmit  and Limited
Transmit , so the sender will send two new segments followed by one retransmit in
response to the first three duplicate ACKs following the losses.

Each of the diagrams below shows the per ACK response to the first round trip for the two
recovery algorithms when the zeroth segment is lost. The top line ("ack#") indicates the
transmitted segment number triggering the ACKs, with an X for the lost segment. The "cwnd"
and "inflight" lines indicate the values of cwnd and inflight, respectively, for these algorithms
after processing each returning ACK but before further (re)transmission. The "sent" line
indicates how much "N"ew or "R"etransmitted data would be sent. Note that the algorithms for
deciding which data to send are out of scope of this document.

In this first example, ACK#1 through ACK#19 contain SACKs for the original flight of data,
ACK#20 and ACK#21 carry SACKs for the limited transmits triggered by the first and second
SACKed segments, and ACK#22 carries the full cumulative ACK covering all data up through the
limited transmits. ACK#22 completes the fast recovery episode and thus completes the PRR
episode.

Note that both algorithms send the same total amount of data, and both algorithms complete the
fast recovery episode with a cwnd matching the ssthresh of 20.  experiences a "half
window of silence" while PRR spreads the voluntary window reduction across an entire RTT.

Next, consider an example scenario with the same initial conditions, except that the first 15
packets (0-14) are lost. During the remainder of the lossy round trip, only 5 ACKs are returned to
the sender. The following examines each of these algorithms in succession.

[RFC5681]
[RFC3042]

Figure 1

RFC 6675
a X  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
c   20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
i   19 19 18 18 17 16 15 14 13 12 11 10  9  9  9  9  9  9  9  9  9  9
s    N  N  R                             N  N  N  N  N  N  N  N  N  N

PRR
a X  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22
c   20 20 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 10
i   19 19 18 18 17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10  9  9
s    N  N  R     N     N     N     N     N     N     N     N     N  N

a: ack#;  c: cwnd;  i: inflight;  s: sent

[RFC6675]
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In this specific situation,  is more aggressive because once Fast Retransmit is triggered
(on the ACK for segment 17), the sender immediately retransmits sufficient data to bring inflight
up to cwnd. Earlier measurements (in ) indicate that 
significantly outperforms PRR  using only PRR-CRB and some other similarly
conservative algorithms that were tested, showing that it is significantly common for the actual
losses to exceed the cwnd reduction determined by the congestion control algorithm.

Under such heavy losses, during the first round trip of fast recovery, PRR uses the PRR-CRB to
follow the packet conservation principle. Since the total losses bring inflight below ssthresh, data
is sent such that the total data transmitted, prr_out, follows the total data delivered to the
receiver as reported by returning ACKs. Transmission is controlled by the sending limit, which is
set to prr_delivered - prr_out.

While not shown in the figure above, once the fast retransmits sent starting at ACK#17 are
delivered and elicit ACKs that increment the SND.UNA, PRR enters PRR-SSRB and increases the
window by exactly 1 segment per ACK until inflight rises to ssthresh during recovery. On heavy
losses when cwnd is large, PRR-SSRB recovers the losses exponentially faster than PRR-CRB.
Although increasing the window during recovery seems to be ill advised, it is important to
remember that this is actually less aggressive than permitted by , which sends the
same quantity of additional data as a single burst in response to the ACK that triggered Fast
Retransmit.

For less severe loss events, where the total losses are smaller than the difference between
FlightSize and ssthresh, PRR-CRB and PRR-SSRB are not invoked since PRR stays in the
Proportional Rate Reduction mode.

Figure 2

RFC 6675
a X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  15 16 17 18 19
c                                              20 20 10 10 10
i                                              19 19  4  9  9
s                                               N  N 6R  R  R

PRR
a X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  15 16 17 18 19
c                                              20 20  5  5  5
i                                              19 19  4  4  4
s                                               N  N  R  R  R

a: ack#;  c: cwnd;  i: inflight;  s: sent

[RFC6675]
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9. Adapting PRR to Other Transport Protocols
The main PRR algorithm and reductions bounds can be adapted to any transport that can
support . In one major implementation (Linux TCP), PRR has been the fast recovery
algorithm for its default and supported congestion control modules since its introduction in 2011 

.

The SafeACK heuristic can be generalized as any ACK of a retransmission that does not cause
some other segment to be marked for retransmission.

10. Measurement Studies
For , a companion paper  evaluated  and various experimental PRR
versions in a large-scale measurement study. At the time of publication, the legacy algorithms
used in that study are no longer present in the code base used in that study, making such
comparisons difficult without recreating historical algorithms. Readers interested in the
measurement study should review  and the IMC paper .

11. Operational Considerations

11.1. Incremental Deployment
PRR is incrementally deployable, because it utilizes only existing transport protocol mechanisms
for data delivery acknowledgment and the detection of lost data. PRR only requires changes to
the transport protocol implementation at the data sender; it does not require any changes at
data receivers or in networks. This allows data senders using PRR to work correctly with any
existing data receivers or networks. PRR does not require any changes to or assistance from
routers, switches, or other devices in the network.

11.2. Fairness
PRR is designed to maintain the fairness properties of the congestion control algorithm with
which it is deployed. PRR only operates during a congestion control response episode, such as
fast recovery or response to ECN , and only makes short-term, per-acknowledgment
decisions to smoothly regulate the volume of in-flight data during an episode such that at the
end of the episode it will be as close as possible to the slow start threshold (ssthresh), as
determined by the congestion control algorithm. PRR does not modify the congestion control
cwnd increase or decrease mechanisms outside of congestion control response episodes.

11.3. Protecting the Network Against Excessive Queuing and Packet Loss
Over long time scales, PRR is designed to maintain the queuing and packet loss properties of the
congestion control algorithm with which it is deployed. As noted above, PRR only operates
during a congestion control response episode, such as fast recovery or response to ECN, and only

[RFC6675]

[First_TCP_PRR]

[RFC6937] [IMC11] [RFC3517]
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[RFC1191]

[RFC2018]

[RFC2119]

[RFC4821]

[RFC5681]

makes short-term, per-acknowledgment decisions to smoothly regulate the volume of in-flight
data during an episode such that at the end of the episode it will be as close as possible to the
slow start threshold (ssthresh), as determined by the congestion control algorithm.

Over short time scales, PRR is designed to cause lower packet loss rates than preceding
approaches like . At a high level, PRR is inspired by the packet conservation principle,
and as much as possible, PRR relies on the self clock process. By contrast, with , a
single ACK carrying a SACK option that implies a large quantity of missing data can cause a step
discontinuity in the pipe estimator, which can cause Fast Retransmit to send a large burst of data
that is much larger than the volume of delivered data. PRR avoids such bursts by basing
transmission decisions on the volume of delivered data rather than the volume of lost data.
Furthermore, as noted above, PRR-SSRB is less aggressive than  (transmitting fewer
segments or taking more time to transmit them), and it outperforms due to the lower probability
of additional losses during recovery.

13. Security Considerations
PRR does not change the risk profile for transport protocols.

Implementers that change PRR from counting bytes to segments have to be cautious about the
effects of ACK splitting attacks , where the receiver acknowledges partial segments for
the purpose of confusing the sender's congestion accounting.
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Appendix A. Strong Packet Conservation Bound
PRR-CRB is based on a conservative, philosophically pure, and aesthetically appealing Strong
Packet Conservation Bound, described here. Although inspired by the packet conservation
principle , it differs in how it treats segments that are missing and presumed lost.
Under all conditions and sequences of events during recovery, PRR-CRB strictly bounds the data
transmitted to be equal to or less than the amount of data delivered to the receiver. Note that the
effects of presumed losses are included in the inflight calculation but do not affect the outcome
of PRR-CRB once inflight has fallen below ssthresh.

This Strong Packet Conservation Bound is the most aggressive algorithm that does not lead to
additional forced losses in some environments. It has the property that if there is a standing
queue at a bottleneck that is carrying no other traffic, the queue will maintain exactly constant
length for the entire duration of the recovery, except for +1/-1 fluctuation due to differences in
packet arrival and exit times. Any less aggressive algorithm will result in a declining queue at
the bottleneck. Any more aggressive algorithm will result in an increasing queue or additional
losses if it is a full drop tail queue.

This property is demonstrated with a thought experiment:

Imagine a network path that has insignificant delays in both directions, except for the
processing time and queue at a single bottleneck in the forward path. In particular, when a
packet is "served" at the head of the bottleneck queue, the following events happen in much less
than one bottleneck packet time: the packet arrives at the receiver; the receiver sends an ACK
that arrives at the sender; the sender processes the ACK and sends some data; the data is queued
at the bottleneck.

If SndCnt is set to DeliveredData and nothing else is inhibiting sending data, then clearly the
data arriving at the bottleneck queue will exactly replace the data that was served at the head of
the queue, so the queue will have a constant length. If the queue is drop tail and full, then the
queue will stay exactly full. Losses or reordering on the ACK path only cause wider fluctuations
in the queue size but do not raise its peak size, independent of whether the data is in order or
out of order (including loss recovery from an earlier RTT). Any more aggressive algorithm that
sends additional data will overflow the drop tail queue and cause loss. Any less aggressive
algorithm will under-fill the queue. Therefore, setting SndCnt to DeliveredData is the most
aggressive algorithm that does not cause forced losses in this simple network. Relaxing the
assumptions (e.g., making delays more authentic and adding more flows, delayed ACKs, etc.) is
likely to increase the fine-grained fluctuations in queue size but does not change its basic
behavior.

Note that the congestion control algorithm implements a broader notion of optimal that includes
appropriately sharing the network. Typical congestion control algorithms are likely to reduce
the data sent relative to the Packet Conserving Bound implemented by PRR, bringing TCP's
actual window down to ssthresh.

[Jacobson88]
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