
RFC 9804
Simple Public Key Infrastructure (SPKI) S-
Expressions

Abstract
This memo specifies the data structure representation that was devised to support Simple Public
Key Infrastructure (SPKI) certificates, as detailed in RFC 2692, with the intent that it be more
widely applicable. It has been and is being used elsewhere. There are multiple implementations
in a variety of programming languages. Uses of this representation are referred to in this
document as "S-expressions". This memo makes precise the encodings of these SPKI S-
expressions: It gives a "canonical form" for them, describes two "transport" representations, and
also describes an "advanced" format for display to people.

Stream: Internet Engineering Task Force (IETF)
RFC: 9804
Category: Informational
Published: June 2025
ISSN: 2070-1721
Authors: R. Rivest

MIT CSAIL
D. Eastlake
Independent

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9804

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Rivest & Eastlake Informational Page 1

https://www.rfc-editor.org/rfc/rfc9804
https://www.rfc-editor.org/info/rfc9804
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents
1. Introduction

1.1. Uses of S-Expressions

1.2. Formalization

1.3. Historical Note

1.4. Conventions Used in This Document

2. S-expressions -- Informal Introduction

3. Character Set

4. Octet-String Representation Types

4.1. Verbatim Representation

4.2. Quoted-String Representation

4.3. Token Representation

4.4. Hexadecimal Representation

4.5. Base-64 Representation of Octet-Strings

4.6. Display-Hints and Internationalization

4.7. Comparison of Octet-Strings

5. Lists

6. S-Expression Representation Types

6.1. Base-64 Representation of S-Expressions

6.2. Canonical Representation

6.3. Basic Transport Representation

6.4. Advanced Transport Representation

7. ABNF of the Syntax

7.1. ABNF for Advanced Transport

7.2. ABNF for Canonical

7.3. ABNF for Basic Transport

8. Restricted S-Expressions

3

4

4

5

5

5

6

7

7

8

9

9

10

10

11

12

12

12

13

13

14

14

14

15

15

16

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 2

1. Introduction
This memo specifies the data structure representation that was devised to support Simple Public
Key Infrastructure (SPKI) certificates , with the intent that it be more widely applicable
(see Section 1.3, "Historical Note"). It is suitable for representing arbitrary, complex data
structures and has been and is being used elsewhere. Uses of this representation herein are
referred to as "S-expressions".

This memo makes precise the encodings of these SPKI S-expressions: It gives a "canonical form"
for them, describes two "transport" representations, and also describes an "advanced" format
for display to people. There are multiple implementations of S-expressions in a variety of
programming languages including Python, Ruby, and C (see Appendix A).

These S-expressions are either byte-strings ("octet-strings") or lists of simpler S-expressions. Here
is a sample S-expression:

9. In-Memory Representations

9.1. List-Structure Memory Representation

9.2. Array-Layout Memory Representation

9.2.1. Octet-String

9.2.2. Octet-String with Display-Hint

9.2.3. List

10. Security Considerations

11. IANA Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Implementations

Acknowledgements

Contributors

Authors' Addresses

16

16

16

17

17

18

18

18

18

18

19

21

21

21

22

[RFC2692]

 (snicker "abc" (#03# |YWJj|))

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 3

It is a list of length three containing the following:

the octet-string "snicker"
the octet-string "abc"
a sub-list containing two elements: The hexadecimal constant #03# (which represents a one-
octet-long octet-string with the value of that octet being 0x03) and the base-64 constant |
YWJj| (which represents the same octet-string as "abc")

This document specifies how to construct and use these S-expressions.

The design goals for S-expressions were as follows:

Generality: S-expressions should be good at representing arbitrary data.
Readability: It should be easy for someone to examine and understand the structure of an S-
expression.
Economy: S-expressions should represent data compactly.
Transportability: S-expressions should be easy to transport over communication media
(such as email) that are known to be less than perfect.
Flexibility: S-expressions should make it relatively simple to modify and extend data
structures.
Canonicalization: It should be easy to produce a unique "canonical" form of an S-expression,
for digital signature purposes.
Efficiency: S-expressions should admit in-memory representations that allow efficient
processing.

For implementors of new applications and protocols other technologies also worthy of
consideration include the following: XML , CBOR , and JSON .

1.1. Uses of S-Expressions
The S-expressions specified herein are in active use today between GnuPG and Ribose's
RNP . Ribose has implemented C++ software to compose and parse these S-expressions

. The GNU software is the Libgcrypt library , and there are other
implementations (see Appendix A).

They are used or referenced in the following RFCs:

 for
 XML-Signature Syntax and Processing

In addition, S-expressions are the inspiration for the encodings in other protocols. For example,
 or .

1.2. Formalization
 is an Internet-Draft that shows a formal model of SPKI S-expressions and formally

demonstrates that the examples and ABNF in this document are correct.

•
•
•

•
•

•
•

•

•

•

[XML] [RFC8949] [RFC8259]

[GnuPG]
[Ribose]

[RNPGP_SEXPP] [Libgcrypt]

• [RFC2693] [SPKI]
• [RFC3275]

[RFC3259] Section 6 of [CDDL-freezer]

[Formal]

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 4

https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-15#section-6

1.4. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

1.3. Historical Note
The S-expressions described here were originally developed for "SDSI" (the Simple Distributed
Security Infrastructure by Lampson and Rivest) in 1996, although their origins date back
to McCarthy's programming language. They were further refined and improved during
the merger of SDSI and SPKI during the first half of 1997. S-
expressions are more readable and flexible than Bernstein's "netstrings" , which were
developed contemporaneously.

Although a specification was made publicly available as a file named draft-rivest-
sexp-00.txt on 4 May 1997, that file was never actually submitted to the IETF. This
document is a clarified and modernized version of that document.

[SDSI]
[LISP]

[SPKI] [RFC2692] [RFC2693]
[BERN]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. S-expressions -- Informal Introduction
Informally, an S-expression is either:

an octet-string, or
a finite list of simpler S-expressions.

An octet-string is a finite sequence of eight-bit octets. An octet-string may be zero length. There
may be many different but equivalent ways of representing an octet-string

The above encodings are all equivalent in that they all denote the same octet-string. Details of
these encodings are given below, and how to give a "display type" to a simple-string is also
described in Section 4.6.

A list is a finite sequence of zero or more simpler S-expressions. A list is represented by using
parentheses to surround the sequence of encodings of its elements, as in:

•
•

 abc -- as a token
 "abc" -- as a quoted string
 #616263# -- as a hexadecimal string
 3:abc -- as a length-prefixed "verbatim" encoding
 |YWJj| -- as a base-64 encoding of the octet-string
 "abc"

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 5

As can be seen, there is variability possible in the encoding of an S-expression. In some
applications, it is desirable to standardize or restrict the encodings; in other cases, it is desirable
to have no restrictions. The following are the target cases these S-expressions aim to handle:

a "transport" or "basic" encoding for transporting the S-expression between computers
a "canonical" encoding, used when signing the S-expression
an "advanced" encoding used for input/output to people
an "in-memory" encoding used for processing the S-expression in the computer

In this document, related encoding techniques for each of these uses are provided.

 (abc (de #6667#) "ghi jkl")

•
•
•
•

Alphabetic:

Numeric:

Whitespace:

The following graphics characters, which are called "pseudo-alphabetic" in this document:

The following graphics characters, which are "reserved punctuation":

3. Character Set
This document specifies encodings of S-expressions. Except when giving "verbatim" encodings,
the character set used is limited to the following characters in ASCII :[RFC0020]

 A B ... Z a b ... z

 0 1 ... 9

 space, horizontal tab, vertical tab, form-feed
 carriage-return, line-feed

 - hyphen or minus
 . period
 / slash
 _ underscore
 : colon
 * asterisk
 + plus
 = equal

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 6

The following characters are unused and unavailable, except in "verbatim" and "quoted string"
encodings:

 (left parenthesis
) right parenthesis
 [left bracket
] right bracket
 { left brace
 } right brace
 | vertical bar
 # number sign
 " double quote
 & ampersand
 \ backslash

 ! exclamation point
 % percent
 ^ circumflex
 ~ tilde
 ; semicolon
 ' single-quote (apostrophe)
 , comma
 < less than
 > greater than
 ? question mark

4. Octet-String Representation Types
This section describes in detail the ways in which an octet-string may be represented.

Recall that an octet-string is any finite sequence of octets and that an octet-string may have
length zero.

4.1. Verbatim Representation
A verbatim encoding of an octet-string consists of three parts:

the length (number of octets) of the octet-string, given in decimal, most significant digit first,
with no leading zeros
a colon ":"
the octet-string itself, verbatim

There are no blanks or whitespace separating the parts. No "escape sequences" are interpreted
in the octet-string. This encoding is also called a "binary" or "raw" encoding.

Here are some sample verbatim encodings:

•

•
•

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 7

4.2. Quoted-String Representation
The quoted-string representation of an octet-string consists of:

an optional decimal length field
an initial double-quote (")
the octet-string with the C programming language escape conventions (\n, etc.)
a final double-quote (")

The specified length is the length of the resulting string after any backslash escape sequences
have been converted to the octet value they denote. The string does not have any "terminating
NULL" that includes, and the length does not count such an octet.

The length is optional.

The escape conventions within the quoted string are as follows (these follow the C programming
language conventions, with an extension for ignoring line terminators of just CR, LF, CRLF, or
LFCR and more restrictive octal and hexadecimal value formats):

Here are some examples of quoted-string encodings:

 3:abc
 7:subject
 4:::":
 12:hello world!
 10:abcdefghij
 0:

•
•
• [C]
•

[C]

[C]

 \a -- audible alert (bell)
 \b -- backspace
 \t -- horizontal tab
 \v -- vertical tab
 \n -- new-line
 \f -- form-feed
 \r -- carriage-return
 \" -- double-quote
 \' -- single-quote
 \? -- question mark
 \\ -- back-slash
 \ooo -- character with octal value ooo (all three
 digits MUST be present)
 \xhh -- character with hexadecimal value hh (both
 digits MUST be present)
 \<carriage-return> -- causes carriage-return to be ignored.
 \<line-feed> -- causes line-feed to be ignored.
 \<carriage-return><line-feed> -- causes
 CRLF to be ignored.
 \<line-feed><carriage-return> -- causes
 LFCR to be ignored.

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 8

4.4. Hexadecimal Representation
An octet-string may be represented with a hexadecimal encoding consisting of:

an (optional) decimal length of the octet-string
a sharp-sign "#"
a hexadecimal encoding of the octet-string, with each octet represented with two
hexadecimal digits, most significant digit first. There be an even number of such digits.
a final sharp-sign "#"

There may be whitespace inserted in the midst of the hexadecimal encoding arbitrarily; it is
ignored. It is an error to have characters other than whitespace and hexadecimal digits.

 "subject"
 "hi there"
 7"subject"
 "\xFE is the same octet as \376"
 3"\n\n\n"
 "This has\n two lines."
 "This has \
 one line."
 ""

4.3. Token Representation
An octet-string that meets the following conditions may be given directly as a "token":

it does not begin with a digit;
it contains only characters that are: alphabetic (upper or lower case), numeric, or one of the
following eight "pseudo-alphabetic" punctuation marks:

it is length 1 or greater.

Note: Upper and lower case are not equivalent. A token may begin with punctuation, including
":".

Here are some examples of token representations:

•
•

- . / _ : * + =

•

 subject
 not-before
 :=..
 class-of-1997
 //example.net/names/smith
 *

•
•
•

MUST

•

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 9

Here are some examples of hexadecimal encodings:

 #616263# -- represents "abc"
 3#616263# -- also represents "abc"
 # 616
 263 # -- also represents "abc"
 ## -- represents the zero-length string

4.5. Base-64 Representation of Octet-Strings
An octet-string may be represented in a base-64 encoding consisting of:

an (optional) decimal length of the octet-string
a vertical bar "|"
the base-64 encoding of the octet-string.
a final vertical bar "|"

Base-64 encoding produces four characters of output for each three octets of input. If the length
of the input divided by three leaves a remainder of one or two, it produces an output block of
length four ending in two or one equals signs, respectively. These equals signs be included
on output, but input routines accept inputs where one or two equals signs are dropped.

Whitespace inserted in the midst of the base-64 encoding is ignored. It is an error to have
characters other than whitespace and base-64 characters.

Here are some examples of base-64 encodings:

Note the difference between this base-64 encoding of an octet-string using vertical bars ("| |")
and the base-64 encoding of an S-expression using curly braces ("{ }") in Section 6.1.

[RFC4648]

•
•
• [RFC4648]
•

MUST
MAY

 |YWJj| -- represents "abc"
 | Y W
 J j | -- also represents "abc"
 3|YWJj| -- also represents "abc"
 |YWJjZA==| -- represents "abcd"
 |YWJjZA| -- also represents "abcd"
 || -- represents the zero-length string

4.6. Display-Hints and Internationalization
An octet-string can contain any type of data representable by a finite octet-string, e.g., text, a
fixed or variable-length integer, or an image. Normally, the application producing and/or
consuming S-expressions will understand their structure, the data type, and the encoding of the
octet-strings within the S-expressions used by that application. If the octet-string consists of text,
use of UTF-8 encoding is .RECOMMENDED [RFC2130] [RFC3629]

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 10

4.7. Comparison of Octet-Strings
It is that two octet-strings be considered equivalent for most computational and
algorithmic purposes if and only if they have the same display-hint and the same data octet-
strings. However, a particular application might need a different criterion. For example, it might
ignore the display hint on comparisons.

The purpose of a display-hint is to provide information on how to display an octet-string to a
user. It has no other function. Many of the MIME types work here.

A display-hint is an octet-string representation surrounded by square brackets. There may be
whitespace separating the display hint octet-string from the surrounding brackets. Any of the
legal octet-string representations may be used for the display-hint string, but a display-hint may
not be applied to a display-hint string -- that is, display-hints may not be nested.

A display-hint that can be used for UTF-8-encoded text is shown in the following example where
the octet-string is "böb☺", i.e., "bob" with an umlaut over the "o", followed by WHITE SMILING
FACE (U+263A).

Every octet-string representation is either preceded by a single display-hint or not so preceded.
There may be whitespace between the close square bracket and the octet-string to which the
hint applies.

Here are some other examples of display-hints:

An octet-string that has no display-hint may be considered to have a MIME type
specified by the application or use. In the absence of such a specification, the default is as
follows:

When an S-expression is being encoded in one of the representations described in Section 6, any
display-hint present is included. If a display-hint is the default, it is not suppressed nor is the
default display-hint included in the representation for an octet-string without a display-hint.

[RFC2046]

 ["text/plain; charset=utf-8"]"b\xC3\xB7b\xE2\x98\xBA"

 [image/gif]
 [charset=unicode-1-1]
 [text/richtext]
 ["text/plain; charset=iso-8859-1"]
 [application/postscript]
 [audio/basic]
 ["http://example.com/display-types/funky.html"]

[RFC2046]

 [application/octet-stream]

RECOMMENDED

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 11

Note that octet-strings are "case-sensitive"; the octet-string "abc" is not equal to the octet-string
"ABC".

An octet-string without a display-hint may be compared to another octet-string (with or without
a display hint) by considering it as an octet-string with the default display-hint specified for the
applications or, in the absence of such specification, the general default display-hint specified in
Section 4.6 .

5. Lists
Just as with octet-strings, there are variations in representing a list. Whitespace may be used to
separate list elements, but they are only required to separate two octet-strings when otherwise
the two octet-strings might be interpreted as one, as when one token follows another. To be
precise, an octet-string represented as a token (Section 4.3) be separated by whitespace
from a following token, verbatim representation, or any of the following if they are prefixed
with a length: quoted-string, hexadecimal, or base-64 representation. Also, whitespace may
follow the initial left parenthesis or precede the final right parenthesis of a list.

Here are some examples of encodings of lists:

MUST

 (a bob c)

 (a (bob c) ((d e) (e f)))

 (11:certificate(6:issuer3:bob)(7:subject5:alice))

 (|ODpFeGFtcGxlIQ==| "1997" murphy 3:XC+)

 ()

6. S-Expression Representation Types
There are three "types" of representation:

canonical
basic transport
advanced transport

The first two be supported by any implementation; the last is . As part of basic
representation, the base-64 representation of an S-expression may be used as
described in Section 6.1.

•
•
•

MUST OPTIONAL
[RFC4648]

6.1. Base-64 Representation of S-Expressions
An S-expression may be represented in a base-64 encoding consisting of:

an opening curly brace "{"

[RFC4648]

•

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 12

6.3. Basic Transport Representation
There are two forms of the "basic transport" representation:

The canonical representation
A base-64 representation of the canonical representation, surrounded by braces
(see Section 6.1)

The basic transport representations (see Section 7.3) are intended to provide a universal means
of representing S-expressions for transport from one machine to another. The base-64 encoding
would be appropriate if the channel over which the S-expression is being sent might be sensitive

the base-64 encoding of the S-expression
a final closing curly brace "}"

Base-64 encoding produces four characters of output for each three octets of input. If the length
of the input divided by three leaves a remainder of one or two, it produces an output block of
length four ending in two or one equals signs, respectively. These equals signs be included
on output, but input routines accept inputs where one or two equals signs are dropped.

Whitespace inserted in the midst of the base-64 encoding, after the opening curly brace, or
before the closing curly brace is ignored. It is an error to have characters other than whitespace
and base-64 characters.

Note the difference between this base-64 encoding of an S-expression using curly braces ("{ }")
and the base-64 encoding of an octet-string using vertical bars ("| |") in Section 4.5.

• [RFC4648]
•

MUST
MAY

6.2. Canonical Representation
This canonical representation is used for digital signature purposes and transport over channels
not sensitive to specific octet values. It is uniquely defined for each S-expression. It is not
particularly readable, but that is not the point. It is intended to be very easy to parse, reasonably
economical, and unique for any S-expression. See and .

The "canonical" form of an S-expression represents each octet-string in verbatim mode, and
represents each list with no blanks separating elements from each other or from the
surrounding parentheses. See also Section 7.2.

Here are some examples of canonical representations of S-expressions:

[CANON1] [CANON2]

 (6:issuer3:bob)
 (4:icon[12:image/bitmap]9:xxxxxxxxx)
 (7:subject(3:ref5:alice6:mother))
 10:foo)]}>bar
 0:

1.
2. [RFC4648]

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 13

to octets of some special values, such as an octet of all zero bits (NULL) or an octet of all one bits
(DEL), or if the channel is sensitive to "line length" such that occasional line terminating
whitespace is needed.

Here are two examples of an S-expression represented in basic transport mode:

The second example above is the same S-expression as the first encoded in base-64.

6.4. Advanced Transport Representation
The "advanced transport" representation is intended to provide more flexible and readable
notations for documentation, design, debugging, and (in some cases) user interface.

The advanced transport representation allows all of the octet-string representation forms
described above in Section 4: quoted strings, base-64, hexadecimal, tokens, representations of
strings with omitted lengths, and so on. See Section 7.1.

 (1:a1:b1:c)

 {KDE6YTE6YjE
 6Yyk= }

7. ABNF of the Syntax
ABNF is the Augmented Backus-Naur Form for syntax specifications as defined in . The
ABNF for advanced representation of S-expressions is given first, and the basic and canonical
forms are derived therefrom. The rule names below in all capital letters are defined in

.

[RFC5234]

Appendix
B.1 of [RFC5234]

7.1. ABNF for Advanced Transport

 sexp = *whitespace value *whitespace

 whitespace = SP / HTAB / vtab / CR / LF / ff

 vtab = %x0B ; vertical tab

 ff = %x0C ; form feed

 value = string / ("(" *(value / whitespace) ")")

 string = [display] simple-string

 display = "[" *whitespace simple-string *whitespace "]"
 *whitespace

 simple-string = verbatim / quoted-string / token / hexadecimal /
 base-64

 verbatim = decimal ":" *OCTET

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 14

https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1
https://www.rfc-editor.org/rfc/rfc5234#appendix-B.1

 ; the length followed by a colon and the exact
 ; number of OCTETs indicated by the length

 decimal = %x30 / (%x31-39 *DIGIT)

 quoted-string = [decimal] DQUOTE *(printable / escaped) DQUOTE

 printable = %x20-21 / %x23-5B / %x5D-7E
 ; All US-ASCII printable but double-quote and
 ; backslash

 escaped = backslash (%x3F / %x61 / %x62 / %x66 / %x6E /
 %x72 / %x74 / %x76 / DQUOTE / quote / backslash
 / 3(%x30-37) / (%x78 2HEXDIG) / CR / LF /
 (CR LF) / (LF CR))

 backslash = %x5C

 quote = %x27 ; single quote

 token = (ALPHA / simple-punc) *(ALPHA / DIGIT /
 simple-punc)

 simple-punc = "-" / "." / "/" / "_" / ":" / "*" / "+" / "="

 hexadecimal = [decimal] "#" *whitespace *hexadecimals "#"

 hexadecimals = 2(HEXDIG *whitespace)

 base-64 = [decimal] "|" *whitespace *base-64-chars
 [base-64-end] "|"

 base-64-chars = 4(base-64-char *whitespace)

 base-64-char = ALPHA / DIGIT / "+" / "/"

 base-64-end = base-64-chars /
 3(base-64-char *whitespace) ["=" *whitespace] /
 2(base-64-char *whitespace) *2("=" *whitespace)

7.2. ABNF for Canonical

 c-sexp = c-string / ("(" *c-sexp ")")

 c-string = ["[" verbatim "]"] verbatim

7.3. ABNF for Basic Transport

 b-sexp = c-sexp / b-base-64

 b-base-64 = "{" *whitespace *base-64-chars base-64-end "}"
 ; encodes a c-sexp, which has a minimum
 ; length of 2

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 15

8. Restricted S-Expressions
This document has described S-expressions in general form. Applications may wish to restrict
their use of S-expressions in various ways as well as to specify a different default display-hint.
Here are some possible restrictions that might be considered:

no advanced representations (only canonical and basic)
no display-hints
no lengths on hexadecimal, quoted-strings, or base-64 encodings
no empty lists
no empty octet-strings
no lists having another list as its first element
no base-64 or hexadecimal encodings
fixed limits on the size of octet-strings

As provided in Section 6, conformant implementations will support canonical and basic
representation, but support for advanced representation is not generally required. Thus,
advanced representation can only be used in applications that mandate its support or where a
capability discovery mechanism indicates support.

•
•
•
•
•
•
•
•

9. In-Memory Representations
For processing, the S-expression would typically be parsed and represented in memory in a way
that is more amenable to efficient processing. This document suggests two alternatives:

"list-structure"
"array-layout"

These are only sketched here, as they are only suggestive. The code in illustrates
these styles in more detail.

9.1. List-Structure Memory Representation
Here there are separate records for simple-strings, strings, and lists or list nodes. An S-
expression of the form ("abc" "de") could be encoded as two records for the simple-strings, two
for the strings, and two for the list elements where a record is a relatively small block of
memory and, except for simple-string, might have pointers in it to other records. This is a fairly
conventional representation as discussed in Section 4 of .

9.2. Array-Layout Memory Representation
Here each S-expression is represented as a contiguous array of octets. The first octet codes the
"type" of the S-expression:

•
•

[SexpCode]

[LISP2]

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 16

Each of the three types is immediately followed by a k-octet integer indicating the size (in octets)
of the following representation. Here, k is an integer that depends on the implementation. It
might be anywhere from 2 to 8, but it would be fixed for a given implementation; it determines
the size of the objects that can be handled. The transport and canonical representations are
independent of the choice of k made by the implementation.

Although the lengths of lists are not given in the usual S-expression notations, it is easy to fill
them in when parsing; when you reach a right parenthesis, you know how long the list
representation was and where to go back to fill in the missing length.

9.2.1. Octet-String

This is represented as follows:

For example (here, k = 2):

9.2.2. Octet-String with Display-Hint

This is represented as follows:

For example, the S-expression:

would be represented as (with k = 2):

01 octet-string

02 octet-string with display-hint

03 beginning of list (and 00 is used for "end of list")

 01 <length> <octet-string>

 01 0003 a b c

 02 <length>
 01 <length> <octet-string> /* for display-type */
 01 <length> <octet-string> /* for octet-string */

 [gif] #61626364#

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 17

[C]

12. References

12.1. Normative References

 and , ,
, 1988.

9.2.3. List

This is represented as:

For example, the list (abc [d]ef (g)) is represented in memory as (with k = 2):

 02 000d
 01 0003 g i f
 01 0004 61 62 63 64

 03 <length> <item1> <item2> <item3> ... <item> 00

 03 001b
 01 0003 a b c
 02 0009
 01 0001 d
 01 0002 e f
 03 0005
 01 0001 g
 00
 00

10. Security Considerations
As a pure data representation format, there are few security considerations to S-expressions. A
canonical form is required for the consistent creation and verification of digital signatures. This
is provided in Section 6.2.

The default display-hint (see Section 4.6) can be specified for an application. Note that if S-
expressions containing untyped octet-strings represented for that application are processed by a
different application, those untyped octet-string may be treated as if they had a different display-
hint.

11. IANA Considerations
This document has no IANA actions.

Kernighan, B. D. Ritchie "The C Programming Language" ISBN
0-13-110370-9

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 18

[RFC0020]

[RFC2119]

[RFC3629]

[RFC4648]

[RFC5234]

[RFC8174]

[BERN]

[CANON1]

[CANON2]

[CDDL-freezer]

[Formal]

[GnuPG]

[Inferno]

, , , ,
, October 1969, .

, , ,
, , March 1997,
.

, , , ,
, November 2003,

.

, , ,
, October 2006, .

 and ,
, , , , January 2008,

.

, ,
, , , May 2017,

.

12.2. Informative References

, , ,
, 1 January 1997,

.

, ,
.

, , 24 March 2023,
.

,
, , ,

28 February 2025,
.

, ,
, , 4 May

2025,
.

, , .

, ,
.

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bernstein, D. J. "Netstrings" Work in Progress Internet-Draft, draft-bernstein-
netstrings-02 <https://datatracker.ietf.org/doc/html/draft-
bernstein-netstrings-02>

Wikipedia "Canonical S-expressions" <https://en.wikipedia.org/wiki/
Canonical_S-expressions>

Grinberg, R. "Csexp - Canonical S-expressions" <https://
github.com/ocaml-dune/csexp>

Bormann, C. "A feature freezer for the Concise Data Definition Language
(CDDL)" Work in Progress Internet-Draft, draft-bormann-cbor-cddl-freezer-15

<https://datatracker.ietf.org/doc/html/draft-bormann-cbor-
cddl-freezer-15>

Petit-Huguenin, M. "A Formalization of Symbolic Expressions" Work in
Progress Internet-Draft, draft-petithuguenin-ufmrg-formal-sexpr-06

<https://datatracker.ietf.org/doc/html/draft-petithuguenin-ufmrg-formal-
sexpr-06>

GnuPG "The GNU Privacy Guard" <https://www.gnupg.org/>

"Inferno S-expressions" Inferno Manual Page <https://man.cat-v.org/inferno/6/
sexprs>

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 19

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-bernstein-netstrings-02
https://datatracker.ietf.org/doc/html/draft-bernstein-netstrings-02
https://en.wikipedia.org/wiki/Canonical_S-expressions
https://en.wikipedia.org/wiki/Canonical_S-expressions
https://github.com/ocaml-dune/csexp
https://github.com/ocaml-dune/csexp
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-15
https://datatracker.ietf.org/doc/html/draft-bormann-cbor-cddl-freezer-15
https://datatracker.ietf.org/doc/html/draft-petithuguenin-ufmrg-formal-sexpr-06
https://datatracker.ietf.org/doc/html/draft-petithuguenin-ufmrg-formal-sexpr-06
https://www.gnupg.org/
https://man.cat-v.org/inferno/6/sexprs
https://man.cat-v.org/inferno/6/sexprs

[Libgcrypt]

[LISP]

[LISP2]

[RFC2046]

[RFC2130]

[RFC2692]

[RFC2693]

[RFC3259]

[RFC3275]

[RFC8259]

[RFC8949]

[Ribose]

[RNPGP_SEXPP]

, , , 6 April 2023,
.

, , , , and ,
, , , 15

August 1962.

,
, April 1960,

.

 and ,
, , , November 1996,

.

, , , , , ,
and ,

, , , April 1997,
.

, , , , September
1999, .

, , , , , and ,
, , , September 1999,

.

, , and , ,
, , April 2002,

.

, , and ,
, , , March 2002,

.

, ,
, , , December 2017,

.

 and , ,
, , , December 2020,

.

, ,
.

,
, 22 March 2025, .

GnuPG "The Libgcrypt Library" Libgcrypt version 1.10.2 <https://
www.gnupg.org/documentation/manuals/gcrypt/>

McCarthy, J. Abrahams, P. W. Edwards, D. J. Hart, T. P. M. Levin "LISP 1.5
Programmer's Manual" ISBN-13 978-0-262-12011-0 ISBN-10 0262130114

McCarthy, J. "Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I" <https://people.cs.umass.edu/
~emery/classes/cmpsci691st/readings/PL/LISP.pdf>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types" RFC 2046 DOI 10.17487/RFC2046
<https://www.rfc-editor.org/info/rfc2046>

Weider, C. Preston, C. Simonsen, K. Alvestrand, H. Atkinson, R. Crispin, M.
P. Svanberg "The Report of the IAB Character Set Workshop held 29

February - 1 March, 1996" RFC 2130 DOI 10.17487/RFC2130 <https://
www.rfc-editor.org/info/rfc2130>

Ellison, C. "SPKI Requirements" RFC 2692 DOI 10.17487/RFC2692
<https://www.rfc-editor.org/info/rfc2692>

Ellison, C. Frantz, B. Lampson, B. Rivest, R. Thomas, B. T. Ylonen "SPKI
Certificate Theory" RFC 2693 DOI 10.17487/RFC2693 <https://
www.rfc-editor.org/info/rfc2693>

Ott, J. Perkins, C. D. Kutscher "A Message Bus for Local Coordination" RFC
3259 DOI 10.17487/RFC3259 <https://www.rfc-editor.org/info/
rfc3259>

Eastlake 3rd, D. Reagle, J. D. Solo "(Extensible Markup Language) XML-
Signature Syntax and Processing" RFC 3275 DOI 10.17487/RFC3275
<https://www.rfc-editor.org/info/rfc3275>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Ribose Group Inc. "Open-source projects for developers and designers" <https://
open.ribose.com/>

"S-Expressions parser and generator library in C++ (SEXP in C++)" Version
0.9.2, commit 249c6e3 <https://github.com/rnpgp/sexpp>

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 20

https://www.gnupg.org/documentation/manuals/gcrypt/
https://www.gnupg.org/documentation/manuals/gcrypt/
https://people.cs.umass.edu/~emery/classes/cmpsci691st/readings/PL/LISP.pdf
https://people.cs.umass.edu/~emery/classes/cmpsci691st/readings/PL/LISP.pdf
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2130
https://www.rfc-editor.org/info/rfc2130
https://www.rfc-editor.org/info/rfc2692
https://www.rfc-editor.org/info/rfc2693
https://www.rfc-editor.org/info/rfc2693
https://www.rfc-editor.org/info/rfc3259
https://www.rfc-editor.org/info/rfc3259
https://www.rfc-editor.org/info/rfc3275
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://open.ribose.com/
https://open.ribose.com/
https://github.com/rnpgp/sexpp

[SDSI]

[SexpCode]

[SEXPP]

[SFEXP]

[SPKI]

[XML]

 and , ,
, 2 October 1996,

.

, , 10 June 2015,
.

, , 11 April 2025,
.

, , 24 March 2023,
.

, ,
.

, , , , and ,
, , 26 November 2008,

.

Rivest, R. B. Lampson "A Simple Distributed Security Architecture"
Working document for SDSI version 1.1 <https://
people.csail.mit.edu/rivest/pubs/RL96.ver-1.1.html>

"SEXP---(S-expressions)" commit 4aa7c36 <https://github.com/
jpmalkiewicz/rivest-sexp>

"SexpProcessor" commit a90f90f <https://github.com/seattlerb/
sexp_processor>

"Small Fast X-Expression Library" commit b7d3bea <https://
github.com/mjsottile/sfsexp>

Rivest, R. "SPKI/SDSI 2.0 A Simple Distributed Security Infrastructure" <https://
people.csail.mit.edu/rivest/pubs/RL96.slides-maryland.pdf>

Bray, T. Paoli, J. Sperberg-McQueen, C.M. Maler, E. F. Yergeau "Extensible
Markup Language (XML) 1.0" W3C Recommendation
<https://www.w3.org/TR/2008/REC-xml-20081126/> Latest version available at

.<https://www.w3.org/TR/REC-xml/>

Appendix A. Implementations
At this time there are multiple implementations, many open source, available that are intended
to read and parse some or all of the various S-expression formats specified here. In particular,
see the following -- likely incomplete -- list:

Project GNU's
Ribose's RNP in C++
Github project of J. P. Malkiewicz in C
The Inferno implementation
Small Fast X-Expression Library
S-expression Processor in Ruby
Canonical S-expressions (OCAML)

• [Libgcrypt]
• [RNPGP_SEXPP]
• [SexpCode]
• [Inferno]
• [SFEXP]
• [SEXPP]
• [CANON2]

Acknowledgements
Special thanks to for his extensive comments.

The comments and suggestions of the following are gratefully acknowledged: and
.

Daniel K. Gillmore

John Klensin
Caleb Malchik

Contributors
Special thanks to , particularly for his extensive work and advice on the
ABNF and on locating and fixing unclear parts of earlier draft versions of this document:

Marc Petit-Huguenin

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 21

https://people.csail.mit.edu/rivest/pubs/RL96.ver-1.1.html
https://people.csail.mit.edu/rivest/pubs/RL96.ver-1.1.html
https://github.com/jpmalkiewicz/rivest-sexp
https://github.com/jpmalkiewicz/rivest-sexp
https://github.com/seattlerb/sexp_processor
https://github.com/seattlerb/sexp_processor
https://github.com/mjsottile/sfsexp
https://github.com/mjsottile/sfsexp
https://people.csail.mit.edu/rivest/pubs/RL96.slides-maryland.pdf
https://people.csail.mit.edu/rivest/pubs/RL96.slides-maryland.pdf
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/REC-xml/

Marc Petit-Huguenin
Impedance Mismatch LLC

marc@petit-huguenin.orgEmail:

Authors' Addresses
Ronald L. Rivest
MIT CSAIL
32 Vassar Street, Room 32-G692

, Cambridge Massachusetts 02139
United States of America

rivest@mit.eduEmail:
https://www.csail.mit.edu/person/ronald-l-rivestURI:

Donald E. Eastlake 3rd
Independent
2386 Panoramic Circle

, Apopka Florida 32703
United States of America

+1-508-333-2270Phone:
d3e3e3@gmail.comEmail:

RFC 9804 SPKI S-Expressions June 2025

Rivest & Eastlake Informational Page 22

mailto:marc@petit-huguenin.org
mailto:rivest@mit.edu
https://www.csail.mit.edu/person/ronald-l-rivest
tel:+1-508-333-2270
mailto:d3e3e3@gmail.com

	RFC 9804
	Simple Public Key Infrastructure (SPKI) S-Expressions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Uses of S-Expressions
	1.2. Formalization
	1.3. Historical Note
	1.4. Conventions Used in This Document

	2. S-expressions -- Informal Introduction
	3. Character Set
	4. Octet-String Representation Types
	4.1. Verbatim Representation
	4.2. Quoted-String Representation
	4.3. Token Representation
	4.4. Hexadecimal Representation
	4.5. Base-64 Representation of Octet-Strings
	4.6. Display-Hints and Internationalization
	4.7. Comparison of Octet-Strings

	5. Lists
	6. S-Expression Representation Types
	6.1. Base-64 Representation of S-Expressions
	6.2. Canonical Representation
	6.3. Basic Transport Representation
	6.4. Advanced Transport Representation

	7. ABNF of the Syntax
	7.1. ABNF for Advanced Transport
	7.2. ABNF for Canonical
	7.3. ABNF for Basic Transport

	8. Restricted S-Expressions
	9. In-Memory Representations
	9.1. List-Structure Memory Representation
	9.2. Array-Layout Memory Representation
	9.2.1. Octet-String
	9.2.2. Octet-String with Display-Hint
	9.2.3. List

	10. Security Considerations
	11. IANA Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Implementations
	Acknowledgements
	Contributors
	Authors' Addresses

