Network Working Group S. Smyshlyaev, Ed.
Internet-Draft CryptoPro
Intended status: Informational V. Nozdrunov
Expires: April 22, 2019 V. Shishkin
TC 26
October 19, 2018
Multilinear Galois Mode (MGM)
draft-smyshlyaev-mgm-09
Abstract
Multilinear Galois Mode (MGM) is an authenticated encryption with
associated data block cipher mode based on EtM principle. MGM is
defined for use with 64-bit and 128-bit block ciphers.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 22, 2019.
Copyright Notice
Copyright (c) 2018 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Smyshlyaev, et al. Expires April 22, 2019 [Page 1]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Existing Constructions . . . . . . . . . . . . . . . . . 2
2. Conventions Used in This Document . . . . . . . . . . . . . . 2
3. Basic Terms and Definitions . . . . . . . . . . . . . . . . . 2
4. Specification . . . . . . . . . . . . . . . . . . . . . . . . 4
4.1. MGM Encryption and Authentication Procedure . . . . . . . 4
4.2. MGM Decryption and Authentication Check Procedure . . . . 6
5. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6. References . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1. Normative References . . . . . . . . . . . . . . . . . . 8
6.2. Informative References . . . . . . . . . . . . . . . . . 8
Appendix A. Test Vectors . . . . . . . . . . . . . . . . . . . . 8
Appendix B. Contributors . . . . . . . . . . . . . . . . . . . . 12
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 12
1. Introduction
Multilinear Galois Mode (MGM) is an authenticated encryption with
associated data block cipher mode based on EtM principle. MGM is
defined for use with 64-bit and 128-bit block. The MGM design
principles can easily be applied to other block sizes.
1.1. Existing Constructions
The text will be added in the future versions of the draft.
2. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
3. Basic Terms and Definitions
This document uses the following terms and definitions for the sets
and operations on the elements of these sets:
V* the set of all bit strings of a finite length (hereinafter
referred to as strings), including the empty string;
substrings and string components are enumerated from right to
left starting from zero;
V_s the set of all bit strings of length s, where s is a non-
negative integer;
Smyshlyaev, et al. Expires April 22, 2019 [Page 2]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
|X| the bit length of the bit string X (if X is an empty string,
then |X| = 0);
X || Y concatenation of strings X and Y both belonging to V*, i.e.,
a string from V_{|X|+|Y|}, where the left substring from
V_{|X|} is equal to X, and the right substring from V_{|Y|}
is equal to Y;
a^s the string in V_s that consists of s 'a' bits: a^s = (a, a,
... , a), 'a' in V_1;
(xor) exclusive-or of the two bit strings of the same length,
Z_{2^s} ring of residues modulo 2^s;
MSB_i: V_s -> V_i the transformation that maps the string X =
(x_{s-1}, ... , x_0) in V_s into the string MSB_i(X) =
(x_{s-1}, ... , x_{s-i}) in V_i, i <= s, (most significant
bits);
Int_s: V_s -> Z_{2^s} the transformation that maps a string X =
(x_{s-1}, ... , x_0) in V_s into the integer Int_s(X) =
2^{s-1} * x_{s-1} + ... + 2 * x_1 + x_0 (the interpretation
of the bit string as an integer);
Vec_s: Z_{2^s} -> V_s the transformation inverse to the mapping
Int_s (the interpretation of an integer as a bit string);
E_K: V_n -> V_n the block cipher permutation under the key K in V_k;
k the bit length of the block cipher key;
n the block size of the block cipher (in bits);
len: V_s -> V_{n/2} the transformation that maps a string X in V_s,
0 <= s <= 2^{n/2} - 1, into the string len(X) =
Vec_{n/2}(|X|) in V_{n/2}, where n is the block size of the
used block cipher;
[+] the addition operation in Z_{2^{n/2}}, where n is the block
size of the used block cipher;
(x) multiplication in GF(2^n), where n is the block size of the
used block cipher; if n = 64, then the field polynomial is
equal to f = x^64 + x^4 + x^3 + x + 1; if n = 128, then the
field polynomial is equal to f = x^128 + x^7 + x^2 + x + 1;
Smyshlyaev, et al. Expires April 22, 2019 [Page 3]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
incr_l: V_n -> V_n the transformation that maps a string L || R,
where L, R in V_{n/2}, into the string incr_l(L || R ) =
Vec_{n/2}(Int_{n/2}(L) [+] 1) || R;
incr_r: V_n -> V_n the transformation that maps a string L || R,
where L, R in V_{n/2}, into the string incr_r(L || R ) = L ||
Vec_{n/2}(Int_{n/2}(R) [+] 1).
4. Specification
An additional parameter that defines the functioning of MGM mode is
the size S of the authentication field (in bits). The value of S
MUST be fixed for a particular protocol, 32 <= S <= 128. The choice
of the value S involves a trade-off between message expansion and the
probability that an attacker can modify a message undetectably.
4.1. MGM Encryption and Authentication Procedure
The MGM encryption and authentication procedure takes the following
parameters as inputs:
1. Encryption key K in V_k.
2. Initial counter nonce ICN in V_{n-1}.
3. Plaintext P, 0 <= |P| < 2^{n/2}. If |P| > 0, then P = P_1 ||
... || P*_q, P_i in V_n, i = 1, ... , q - 1, P*_q in V_u, 1 <= u
<= n. If |P| = 0, then by definition P*_q is empty, q = 0, and u
= n.
4. Associated authenticated data A, 0 <= |A| < 2^{n/2}. If |A| > 0,
then A = A_1 || ... || A*_h, A_j in V_n, j = 1, ... , h - 1, A*_h
in V_t, 1 <= t <= n. If |A| = 0, then by definition A*_h is
empty, h = 0, and t = n. The associated data is authenticated
but is not encrypted.
The MGM encryption and authentication procedure outputs the following
parameters:
1. Initial counter nonce ICN.
2. Associated authenticated data A.
3. Ciphertext C in V_{|P|}.
4. Authentication tag T in V_S.
Smyshlyaev, et al. Expires April 22, 2019 [Page 4]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
The MGM encryption and authentication procedure consists of the
following steps:
+----------------------------------------------------------------+
| MGM-Encrypt(K, ICN, P, A) |
|----------------------------------------------------------------|
| 1. Encryption step: |
| - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do |
| C_i = P_i (xor) E_K(Y_i), |
| - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), |
| - C = C_1 || ... || C*_q. |
| |
| 2. Padding step: |
| - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. |
| |
| 3. Authentication tag T generation step: |
| - Z_1 = E_K(1^1 || ICN), |
| - sum = 0, |
| - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), |
| sum = sum (xor) H_i (x) A_i, |
| Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), |
| sum = sum (xor) H_{h+j} (x) C_j, |
| Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T = MSB_S(E_K(sum (xor) H_{h+q+1} (x) |
| (len(A) || len(C)))). |
| |
| 4. Return (ICN, A, C, T). |
|----------------------------------------------------------------+
The ICN value for each message that is encrypted under the given key
K must be chosen in a unique manner. Using the same ICN values for
two different messages encrypted with the same key eliminates the
security properties of this mode.
Users who do not wish to encrypt plaintext can provide a string P of
length zero. Users who do not wish to authenticate associated data
can provide a string A of length zero. The length of the associated
Smyshlyaev, et al. Expires April 22, 2019 [Page 5]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
data A and of the plaintext P MUST be such that 0 < |A| + |P| <
2^{n/2}.
4.2. MGM Decryption and Authentication Check Procedure
The MGM decryption and authentication procedure takes the following
parameters as inputs:
1. The encryption key K in V_k.
2. The initial counter nonce ICN in V_{n-1}.
3. The associated authenticated data A, 0 <= |A| < 2^{n/2}. A =
A_1 || ... || A*_h, A_j in V_n, j = 1, ... , h - 1, A*_h in V_t,
1 <= t <= n.
4. The ciphertext C, 0 <= |C| < 2^{n/2}. C = C_1 || ... || C*_q, C_i
in V_n, i = 1, ... , q - 1, C*_q in V_u, 1 <= u <= n.
5. The authenticated tag T in V_S.
The MGM decryption and authentication procedure outputs FAIL or the
following parameters:
1. Plaintext P in V_{|C|}.
2. Associated authenticated data A.
The MGM decryption and authentication procedure consists of the
following steps:
Smyshlyaev, et al. Expires April 22, 2019 [Page 6]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
+----------------------------------------------------------------+
| MGM-Decrypt(K, ICN, A, C, T) |
|----------------------------------------------------------------|
| 1. Padding step: |
| - A_h = A*_h || 0^{n-t}, |
| - C_q = C*_q || 0^{n-u}. |
| |
| 2. Authentication tag T' generation step: |
| - Z_1 = E_K(1^1 || ICN), |
| - sum1 = 0, sum2 = 0, |
| - For i = 1, 2, ..., h do |
| H_i = E_K(Z_i), |
| sum1 = sum1 (xor) H_i (x) A_i, |
| Z_{i+1} = incr_l(Z_i), |
| - For j = 1, 2, ..., q do |
| H_{h+j} = E_K(Z_{h+j}), |
| sum2 = sum2 (xor) H_{h+j} (x) C_j, |
| Z_{h+j+1} = incr_l(Z_{h+j}), |
| - H_{h+q+1} = E_K(Z_{h+q+1}), |
| - T' = MSB_S(E_K(sum1 (xor) sum2 (xor) |
| H_{h+q+1} (x) (len(A) || len(C)))), |
| - If T' != T then return FAIL |
| return FAIL. |
| |
| 3. Decryption step: |
| - Y_1 = E_K(0^1 || ICN), |
| - For i = 2, 3, ... , q do |
| Y_i = incr_r(Y_{i-1}), |
| - For i = 1, 2, ... , q - 1 do |
| P_i = C_i (xor) E_K(Y_i), |
| - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), |
| - P = P_1 || ... || P*_q. |
| |
| 4. Return (P, A). |
|----------------------------------------------------------------+
5. Rationale
The MGM mode was originally proposed in [PDMODE].
The MGM mode is designed to be fast, parallelizable, inverse free,
online and secure.
The MGM is based on counters for the reasons of performance. The
first counter (Y_i, see Section 4.1) is used for message encryption,
the second counter (H_i, see Section 4.1) is used for authentication.
The second counter is encrypted eliminating the chance of obtaining
Smyshlyaev, et al. Expires April 22, 2019 [Page 7]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
any information about the H_k value in case when the H_l value is
known to the adversary ( here l is not equal to k ).
To provide parallelizable authentication a multilinear function is
used.
To avoid attacks based on padding and linear properties of
multilinear function the lengths of associated data A, encrypted
message C, and encrypting authentication tag is added.
A collision of "usual" counters leads to obtaining the information
about the H_i values and possible authentication vulnerabilities. To
minimize the probability of this event we change the principle of
counters operating by using the functions incr_l and incr_r. To
counteract finding collisions we encrypt initial values of both
counters.
6. References
6.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.
[RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher
"Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March 2016,
.
6.2. Informative References
[GOST3412-2015]
Federal Agency on Technical Regulating and Metrology,
"Information technology. Cryptographic data security.
Block ciphers", GOST R 34.12-2015, 2015.
[PDMODE] Vladislav Nozdrunov, "Parallel and double block cipher
mode of operation (PD-mode) for authenticated encryption",
CTCrypt 2017 proceedings, pp. 36-45, 2017.
Appendix A. Test Vectors
Test vectors for the Kuznyechik block cipher (n = 128, k = 256)
defined in [GOST3412-2015] (the English version can be found in
[RFC7801]).
Smyshlyaev, et al. Expires April 22, 2019 [Page 8]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
Encryption key K:
00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77
00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF
Associated authenticated data A:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05
Plaintext P:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A
00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00
00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11
00040: AA BB CC
1. Encryption step:
0^1 || ICN:
00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Y_1:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD
E_K(Y_1):
00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74
Y_2:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE
E_K(Y_2):
00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33
Y_3:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF
E_K(Y_3):
00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C
Y_4:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0
E_K(Y_4):
00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA
Y_5:
00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1
E_K(Y_5):
00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48
C:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
Smyshlyaev, et al. Expires April 22, 2019 [Page 9]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52
2. Padding step:
A_1 || ... || A_h:
00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01
00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03
00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00
C_1 || ... || C_q:
00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC
00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39
00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C
00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB
00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 00
3. Authentication tag T generation step:
1^1 || ICN:
00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88
Z_1:
00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F
H_1:
00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B
current sum:
00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38
Z_2:
00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F
H_2:
00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31
current sum:
00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73
Z_3:
00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F
H_3:
00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A
current sum:
00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42
Z_4:
00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F
Smyshlyaev, et al. Expires April 22, 2019 [Page 10]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
H_4:
00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB
current sum:
00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A
Z_5:
00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F
H_5:
00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43
current sum:
00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D
Z_6:
00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F
H_6:
00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2
current sum:
00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5
Z_7:
00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F
H_7:
00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31
current sum:
00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40
Z_8:
00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F
H_8:
00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8
current sum:
00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42
Z_9:
00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F
H_9:
00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D
len(A) || len(C):
00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18
sum (xor) H_9 (x) (len(A) || len(C)):
00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28
Tag T:
00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C
Smyshlyaev, et al. Expires April 22, 2019 [Page 11]
Internet-Draft Multilinear Galois Mode (MGM) October 2018
Appendix B. Contributors
o Evgeny Alekseev
CryptoPro
alekseev@cryptopro.ru
o Ekaterina Smyshlyaeva
CryptoPro
ess@cryptopro.ru
o Lilia Ahmetzyanova
CryptoPro
lah@cryptopro.ru
o Grigory Marshalko
TC 26
marshalko_gb@tc26.ru
o Vladimir Rudskoy
TC 26
rudskoy_vi@tc26.ru
o Alexey Nesterenko
National Research University Higher School of Economics
anesterenko@hse.ru
Authors' Addresses
Stanislav Smyshlyaev (editor)
CryptoPro
Phone: +7 (495) 995-48-20
Email: svs@cryptopro.ru
Vladislav Nozdrunov
TC 26
Email: nozdrunov_vi@tc26.ru
Vasily Shishkin
TC 26
Email: shishkin_va@tc26.ru
Smyshlyaev, et al. Expires April 22, 2019 [Page 12]