
RFC 0000

The GNU Name System

Abstract

This document provides the GNU Name System (GNS) technical specification. GNS is a

decentralized and censorship-resistant domain name resolution protocol that provides a privacy-

enhancing alternative to the Domain Name System (DNS) protocols.

This document defines the normative wire format of resource records, resolution processes,

cryptographic routines, and security and privacy considerations for use by implementers.

This specification was developed outside the IETF and does not have IETF consensus. It is

published here to inform readers about the function of GNS, guide future GNS implementations,

and ensure interoperability among implementations including with the pre-existing GNUnet

implementation.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Independent Submission

0000

Informational

October 2023 

2070-1721

   M. Schanzenbach

Fraunhofer AISEC

C. Grothoff

Berner Fachhochschule

B. Fix

GNUnet e.V.

Status of This Memo 

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor

has chosen to publish this document at its discretion and makes no statement about its value for

implementation or deployment. Documents approved for publication by the RFC Editor are not

candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc0000

Copyright Notice 

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

Schanzenbach, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc0000
https://www.rfc-editor.org/info/rfc0000


This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents ( ) in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents 

1.  Introduction

1.1.  Requirements Notation

2.  Terminology

3.  Overview

3.1.  Names and Zones

3.2.  Publishing Binding Information

3.3.  Resolving Names

4.  Zones

4.1.  Zone Top-Level Domain (zTLD)

4.2.  Zone Revocation

5.  Resource Records

5.1.  Zone Delegation Records

5.1.1.  PKEY

5.1.2.  EDKEY

5.2.  Redirection Records

5.2.1.  REDIRECT

5.2.2.  GNS2DNS

5.3.  Auxiliary Records

5.3.1.  LEHO

5.3.2.  NICK

5.3.3.  BOX

6.  Record Encoding for Remote Storage

6.1.  The Storage Key

6.2.  Plaintext Record Data (RDATA)

6.3.  The Resource Records Block

4

5

5

7

7

8

9

10

11

12

16

18

18

21

24

25

25

26

26

27

27

28

30

30

31

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 2

https://trustee.ietf.org/license-info


7.  Name Resolution

7.1.  Start Zones

7.2.  Recursion

7.3.  Record Processing

7.3.1.  REDIRECT

7.3.2.  GNS2DNS

7.3.3.  BOX

7.3.4.  Zone Delegation Records

7.3.5.  NICK

8.  Internationalization and Character Encoding

9.  Security and Privacy Considerations

9.1.  Availability

9.2.  Agility

9.3.  Cryptography

9.4.  Abuse Mitigation

9.5.  Zone Management

9.6.  DHTs as Remote Storage

9.7.  Revocations

9.8.  Zone Privacy

9.9.  Zone Governance

9.10. Namespace Ambiguity

10. GANA Considerations

10.1.  GNS Record Types Registry

10.2.  .alt Subdomains Registry

11. IANA Considerations

12. Implementation and Deployment Status

13. References

13.1.  Normative References

13.2.  Informative References

33

34

35

36

36

37

38

38

38

39

39

39

40

40

41

41

42

42

43

43

44

44

45

46

47

47

47

47

49

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 3



Appendix A.  Usage and Migration

A.1.  Zone Dissemination

A.2.  Start Zone Configuration

A.3.  Globally Unique Names and the Web

A.4.  Migration Paths

Appendix B.  Example Flows

B.1.  AAAA Example Resolution

B.2.  REDIRECT Example Resolution

B.3.  GNS2DNS Example Resolution

Appendix C.  Base32GNS

Appendix D.  Test Vectors

D.1.  Base32GNS Encoding/Decoding

D.2.  Record Sets

D.3.  Zone Revocation

Acknowledgements

Authors' Addresses

51

51

52

53

54

54

54

55

56

57

59

59

60

73

77

77

1. Introduction 

This specification describes the GNU Name System (GNS), a censorship-resistant, privacy-

preserving, and decentralized domain name resolution protocol. GNS cryptographically secures

the binding of names to arbitrary tokens, enabling it to double in some respects as an alternative

to some of today's public key infrastructures.

Per Domain Name System (DNS) terminology , GNS roughly follows the idea of a local

root zone deployment (see ), with the difference that the design encourages alternative

roots and does not expect all deployments to use the same or any specific root zone. In the GNS

reference implementation, users can autonomously and freely delegate control of names to

zones through their local configurations. GNS expects each user to be in control of their setup. By

following the guidelines in Section 9.10, users should manage to avoid any confusion as to how

names are resolved.

[RFC1035]

[RFC8806]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 4



Apex Label:

Application:

Blinded Zone Key:

Extension Label:

Label Separator:

2. Terminology 

This type of label is used to publish resource records in a zone that can be resolved

without providing a specific label. It is the GNS method for providing what is called the "zone

apex" in DNS . The apex label is represented using the character U+0040 ("@"

without the quotes). 

An application is a component that uses a GNS implementation to resolve names

into records and processes its contents. 

The blinded zone key is a key derived from a zone key and a label. The zone

key and any blinded zone key derived from it are unlinkable without knowledge of the

specific label used for the derivation. 

This type of label is used to refer to the authoritative zone that the record is in.

The primary use for the extension label is in redirections where the redirection target is

defined relative to the authoritative zone of the redirection record (see Section 5.2). The

extension label is represented using the character U+002B ("+" without the quotes). 

Labels in a name are separated using the label separator U+002E ("." without

the quotes). In GNS, except for zone Top-Level Domains (zTLDs) (see below) and boxed

records (see Section 5.3.3), every label separator in a name indicates delegation to another

zone. 

Name resolution and zone dissemination are based on the principle of a petname system where

users can assign local names to zones. The GNS has its roots in ideas from the Simple Distributed

Security Infrastructure , enabling the decentralized mapping of secure identifiers to

memorable names. One of the first academic descriptions of the cryptographic ideas behind GNS

can be found in .

This document defines the normative wire format of resource records, resolution processes,

cryptographic routines, and security and privacy considerations for use by implementers.

This specification was developed outside the IETF and does not have IETF consensus. It is

published here to guide implementers of GNS and to ensure interoperability among

implementations.

1.1. Requirements Notation 

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14   when, and only when, they appear in

all capitals, as shown here.

[SDSI]

[GNS]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC4033]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 5



Label:

Name:

Resolver:

Resource Record:

Start Zone:

Top-Level Domain (TLD):

Zone:

Zone Key:

Zone Key Derivation Function:

Zone Master:

A GNS label is a label as defined in . Labels are UTF-8 strings in Unicode

Normalization Form C (NFC) . The apex label and the extension label have

special purposes in the resolution protocol that are defined in the rest of this document. Zone

administrators  disallow certain labels that might be easily confused with other labels

through registration policies (see also Section 9.4). 

A name in GNS is a domain name as defined in : names are UTF-8 strings 

 consisting of an ordered list of labels concatenated with a label separator. Names

are resolved starting from the rightmost label. GNS does not impose length restrictions on

names or labels. However, applications  ensure that name and label lengths are

compatible with DNS and, in particular, Internationalized Domain Names for Applications

(IDNA) . In the spirit of , applications  preprocess names and labels to

ensure compatibility with DNS or support specific user expectations -- for example, according

to . A GNS name may be indistinguishable from a DNS name, and care must

be taken by applications and implementers when handling GNS names (see Section 9.10). In

order to avoid misinterpretation of example domains with (reserved) DNS domains, this

document uses the suffix ".gns.alt" in examples which is also registered in the GANA ".alt

Subdomains" registry  (see also ). 

In this document, a resolver is the component of a GNS implementation that provides

the recursive name resolution logic defined in Section 7. 

A GNS resource record is the information associated with a label in a GNS

zone. A GNS resource record contains information as defined by its resource record type. 

In order to resolve any given GNS name, an initial start zone must be determined

for this name. The start zone can be explicitly defined as part of the name using a zTLD.

Otherwise, it is determined through a local suffix-to-zone mapping (see Section 7.1). 

The rightmost part of a GNS name is a GNS TLD. A GNS TLD can

consist of one or more labels. Unlike DNS TLDs (defined in ), GNS does not expect all

users to use the same global root zone. Instead, with the exception of zTLDs (see Section 4.1),

GNS TLDs are typically part of the configuration of the local resolver (see Section 7.1) and thus

might not be globally unique. 

A GNS zone contains authoritative information (resource records). A zone is uniquely

identified by its zone key. Unlike DNS zones, a GNS zone does not need to have an SOA record

under the apex label. 

The zone key is a key that uniquely identifies a zone. It is usually a public key of an

asymmetric key pair. However, the established technical term "public key" is misleading, as in

GNS a zone key may be a shared secret that should not be disclosed to unauthorized parties. 

The zone key derivation function (ZKDF) blinds a zone key using

a label. 

The zone master is the component of a GNS implementation that provides local

zone management and publication as defined in Section 6. 

[RFC8499]

[Unicode-UAX15]

MAY

[RFC8499]

[RFC3629]

MAY

[RFC5890] [RFC5895] MAY

[Unicode-UTS46]

[GANA] [RFC9476]

[RFC8499]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 6



Zone Owner:

Zone Top-Level Domain (zTLD):

Zone Type:

The zone owner is the holder of the secret (typically a private key), which

(together with a label and a value to sign) allows the creation of zone signatures that can be

validated against the respective blinded zone key. 

A GNS zTLD is a sequence of GNS labels at the end of a GNS

name. The zTLD encodes a zone type and zone key of a zone (see Section 4.1). Due to the

statistical uniqueness of zone keys, zTLDs are also globally unique. A zTLD label sequence can

only be distinguished from ordinary TLD label sequences by attempting to decode the labels

into a zone type and zone key. 

The type of a GNS zone determines the cipher system and binary encoding format

of the zone key, blinded zone keys, and cryptographic signatures. 

3. Overview 

GNS exhibits the three properties that are commonly used to describe a petname system:

Global names through the concept of zTLDs:

As zones can be uniquely identified by their zone keys and are statistically unique, zTLDs are

globally unique mappings to zones. Consequently, GNS domain names with a zTLD suffix are

also globally unique. Names with zTLD suffixes are not human readable. 

Memorable petnames for zones:

Users can configure local, human-readable references to zones. Such petnames serve as zTLD

monikers that provide convenient names for zones to the local operator. The petnames may

also be published as suggestions for other users searching for a good label to use when

referencing the respective zone. 

A secure mapping from names to records:

GNS allows zone owners to map labels to resource records or to delegate authority of names

in the subdomain induced by a label to other zones. Zone owners may choose to publish this

information to make it available to other users. Mappings are encrypted and signed using

keys derived from the respective label before being published in remote storage. When names

are resolved, signatures on resource records including delegations are verified by the

recursive resolver. 

In the remainder of this document, the "implementer" refers to the developer building a GNS

implementation including the resolver, zone master, and supporting configuration such as start

zones (see Section 7.1).

3.1. Names and Zones 

It follows from the above that GNS does not support names that are simultaneously global,

secure, and human readable. Instead, names are either global and not human readable or not

globally unique and human readable. An example for a global name pointing to the record

"example" in a zone is as follows:

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 7



Now consider the case where a user locally configured the petname "pet.gns.alt" for the zone

with the "example" record of the name above. The name "example.pet.gns.alt" would then point

to the same record as the globally unique name above, but name resolution would only work on

the local system where the "pet.gns.alt" petname is configured.

The delegation of petnames and subsequent resolution of delegation build on ideas from the

Simple Distributed Security Infrastructure . In GNS, any user can create and manage any

number of zones (see Section 4) if their system provides a zone master implementation. For each

zone, the zone type determines the respective set of cryptographic operations and the wire

formats for encrypted data, public keys, and signatures. A zone can be populated with mappings

from labels to resource records (see Section 5) by its owner. A label can be mapped to a

delegation record; this results in the corresponding subdomain being delegated to another zone.

Circular delegations are explicitly allowed, including delegating a subdomain to its immediate

parent zone. In order to support (legacy) applications as well as to facilitate the use of petnames,

GNS defines auxiliary record types in addition to supporting existing DNS records.

example.000G006K2TJNMD9VTCYRX7BRVV3HAEPS15E6NHDXKPJA1KAJJEG9AFF884

[SDSI]

3.2. Publishing Binding Information 

Zone contents are encrypted and signed before being published in remote key-value storage (see 

Section 6), as illustrated in Figure 1. In this process, unique zone identification is hidden from the

network through the use of key blinding. Key blinding allows the creation of signatures for zone

contents using a blinded public/private key pair. This blinding is realized using a deterministic

key derivation from the original zone key and corresponding private key using record label

values as inputs from which blinding factors are derived. Specifically, the zone owner can derive

blinded private keys for each record set published under a label, and a resolver can derive the

corresponding blinded public keys. It is expected that GNS implementations use decentralized

remote storage entities, such as distributed hash tables (DHTs), in order to facilitate availability

within a network without the need for dedicated infrastructure. The specification of such a

distributed or decentralized storage entity is out of scope for this document, but possible existing

implementations include those based on , , or .[RFC7363] [Kademlia] [R5N]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 8



A zone master implementation  be provided as part of a GNS implementation to enable

users to create and manage zones. If this functionality is not implemented, names can still be

resolved if zone keys for the initial step in the name resolution have been configured (see Section

7) or if the names end with a zTLD suffix.

Figure 1: An Example Diagram of Two Hosts Publishing GNS Zones 

       Host A         |   Remote        |      Host B
                      |   Storage       |
                      |                 |
                      |    +---------+  |
                      |   /         /|  |
             Publish  |  +---------+ |  |  Publish
 +---------+ Records  |  |         | |  |  Records +---------+
 |  Zone   |----------|->| Record  | |<-|----------|  Zone   |
 | Master  |          |  | Storage | |  |          | Master  |
 +---------+          |  |         |/   |          +---------+
      A               |  +---------+    |               A
      |               |                 |               |
   +---------+        |                 |           +---------+
  /   |     /|        |                 |          /    |    /|
 +---------+ |        |                 |         +---------+ |
 |         | |        |                 |         |         | |
 |  Local  | |        |                 |         |  Local  | |
 |  Zones  | |        |                 |         |  Zones  | |
 |         |/         |                 |         |         |/
 +---------+          |                 |         +---------+

SHOULD

3.3. Resolving Names 

Applications use the resolver to look up GNS names. Starting from a configurable start zone,

names are resolved by following zone delegations recursively, as illustrated in Figure 2. For each

label in a name, the recursive GNS resolver fetches the respective record set from the storage

layer (see Section 7). Without knowledge of the label values and the zone keys, the different

derived keys are unlinkable to both the original zone key and each other. This prevents zone

enumeration (except via expensive online brute-force attacks): to confirm the affiliation of a

query or the corresponding encrypted record set with a specific zone requires knowledge of both

the zone key and the label, neither of which is disclosed to remote storage by the protocol. At the

same time, the blinded zone key and digital signatures associated with each encrypted record set

allow resolvers and oblivious remote storage to verify the integrity of the published information

without disclosing anything about the originating zone or the record sets.

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 9



Figure 2: High-Level View of the GNS Resolution Process 

                           Local Host           |   Remote
                                                |   Storage
                                                |
                                                |    +---------+
                                                |   /         /|
                                                |  +---------+ |
+-----------+ Name     +----------+ Recursive   |  |         | |
|           | Lookup   |          | Resolution  |  | Record  | |
|Application|----------| Resolver |-------------|->| Storage | |
|           |<---------|          |<------------|--|         |/
+-----------+ Results  +----------+ Intermediate|  +---------+
                          A         Results     |
                          |                     |
                       +---------+              |
                      /   |     /|              |
                     +---------+ |              |
                     |         | |              |
                     |  Start  | |              |
                     |  Zones  | |              |
                     |         |/               |
                     +---------+                |

4. Zones 

A zone in GNS is uniquely identified by its zone type (ztype) and zone key. Each zone can be

referenced by its zTLD (see Section 4.1), which is a string that encodes the zone type and zone

key. The ztype is a unique 32-bit number that corresponds to a resource record type number

identifying a delegation record type in the GANA "GNS Record Types" registry . The ztype

is a unique identifier for the set cryptographic functions of the zone and the format of the

delegation record type. Any ztype registration  define the following set of cryptographic

functions:

KeyGen() -> d, zk

A function for generating a new private key d and the corresponding public zone key zk. 

ZKDF(zk,label) -> zk'

A ZKDF that blinds a zone key zk using a label.  zk and zk' must be unlinkable. Furthermore,

blinding zk with different values for the label must result in different, unlinkable zk' values. 

S-Encrypt(zk,label,expiration,plaintext) -> ciphertext

A symmetric encryption function that encrypts the plaintext to derive ciphertext based on key

material derived from the zone key zk, a label, and an expiration timestamp. In order to

leverage performance-enhancing caching features of certain underlying storage entities -- in

particular, DHTs -- a deterministic encryption scheme is recommended. 

[GANA]

MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 10



S-Decrypt(zk,label,expiration,ciphertext) -> plaintext

A symmetric decryption function that decrypts the ciphertext into plaintext based on key

material derived from the zone key, a label, and an expiration timestamp. 

Sign(d,message) -> signature

A function for signing a message using the private key d, yielding an unforgeable

cryptographic signature. In order to leverage performance-enhancing caching features of

certain underlying storage entities -- in particular, DHTs -- a deterministic signature scheme is

recommended. 

Verify(zk,message,signature) -> boolean

A function for verifying that the signature was created using the private key d corresponding

to the zone key zk where d,zk := Keygen(). The function returns a boolean value of "TRUE" if

the signature is valid and "FALSE" otherwise. 

SignDerived(d,label,message) -> signature

A function for signing a message (typically encrypted record data) that can be verified using

the derived zone key zk' := ZKDF(zk,label). In order to leverage performance-enhancing

caching features of certain underlying storage entities -- in particular, DHTs -- a deterministic

signature scheme is recommended. 

VerifyDerived(zk,label,message,signature) -> boolean

A function for verifying the signature using the derived zone key zk' := ZKDF(zk,label). The

function returns a boolean value of "TRUE" if the signature is valid and "FALSE" otherwise. 

The cryptographic functions of the default ztypes are specified with their corresponding

delegation records as discussed in Section 5.1. In order to support cryptographic agility,

additional ztypes  be defined in the future that replace or update the default ztypes defined

in this document. All ztypes  be registered as dedicated zone delegation record types in the

GANA "GNS Record Types" registry (see ). When defining new record types, the

cryptographic security considerations of this document -- in particular, Section 9.3 -- apply.

MAY

MUST

[GANA]

4.1. Zone Top-Level Domain (zTLD) 

A zTLD is a string that encodes the zone type and zone key into a domain name suffix. A zTLD is

used as a globally unique reference to a zone in the process of name resolution. It is created by

encoding a binary concatenation of the zone type and zone key (see Figure 3). The used encoding

is a variation of the Crockford Base32 encoding  called Base32GNS. The encoding

and decoding symbols for Base32GNS including this modification are defined in Table 4

(Appendix C). The functions for encoding and decoding based on Table 4 are called Base32GNS-

Encode and Base32GNS-Decode, respectively.

[CrockfordB32]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 11



The ZONE TYPE must be encoded in network byte order. The format of the ZONE KEY depends

entirely on the ZONE TYPE.

Consequently, a zTLD is encoded and decoded as follows:

where "||" is the concatenation operator.

The zTLD can be used "as is" as a rightmost label in a GNS name. If an application wants to

ensure DNS compatibility of the name, it  also represent the zTLD as follows: if the zTLD is

less than or equal to 63 characters, it can be used as a zTLD as is. If the zTLD is longer than 63

characters, the zTLD is divided into smaller labels separated by the label separator. Here, the

most significant bytes of the "ztype||zkey" concatenation must be contained in the rightmost

label of the resulting string and the least significant bytes in the leftmost label of the resulting

string. This allows the resolver to determine the ztype and zTLD length from the rightmost label

and to subsequently determine how many labels the zTLD should span. A GNS implementation 

 support the division of zTLDs in DNS-compatible label lengths. For example, assuming a

zTLD of 130 characters, the division is as follows:

Figure 3: The Binary Representation of the zTLD 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|       ZONE TYPE       |      ZONE KEY         /
+-----+-----+-----+-----+                       /
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+

zTLD := Base32GNS-Encode(ztype||zkey)
ztype||zkey := Base32GNS-Decode(zTLD)

MAY

MUST

zTLD[126..129].zTLD[63..125].zTLD[0..62]

4.2. Zone Revocation 

In order to revoke a zone key, a signed revocation message  be published. This message 

 be signed using the private key of the zone. The revocation message is broadcast to the

network. The specification of the broadcast mechanism is out of scope for this document. A

possible broadcast mechanism for efficient flooding in a distributed network is implemented in 

. Alternatively, revocation messages could also be distributed via a distributed ledger or

a trusted central server. To prevent flooding attacks, the revocation message  contain a

proof of work (PoW). The revocation message, including the PoW,  be calculated ahead of

time to support timely revocation.

MUST

MUST

[GNUnet]

MUST

MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 12



S:

t:

m:

T:

p:

v:

y:

X:

K:

POW:

TIMESTAMP:

ZONE TYPE:

ZONE KEY:

For all occurrences below, "Argon2id" is the password-based key derivation function as defined

in . For the PoW calculations, the algorithm is instantiated with the following

parameters:

The salt. Fixed 16-byte string: "GnsRevocationPow" 

Number of iterations: 3 

Memory size in KiB: 1024 

Output length of hash in bytes: 64 

Parallelization parameter: 1 

Algorithm version: 0x13 

Algorithm type (Argon2id): 2 

Unused 

Unused 

Figure 4 illustrates the format of the data "P" on which the PoW is calculated.

A 64-bit value that is a solution to the PoW. In network byte order. 

Denotes the absolute 64-bit date when the revocation was computed. In

microseconds since midnight (0 hour), January 1, 1970 UTC in network byte order. 

The 32-bit zone type in network byte order. 

The 256-bit public key zk of the zone that is being revoked. The wire format of this

value is defined by the ZONE TYPE. 

[RFC9106]

Figure 4: The Format of the PoW Data 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      POW                      |
+-----------------------------------------------+
|                   TIMESTAMP                   |
+-----------------------------------------------+
|       ZONE TYPE       |    ZONE KEY           |
+-----+-----+-----+-----+                       |
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 13



Z:

D:

EPOCH:

TIMESTAMP:

Usually, PoW schemes require that one POW value be found, such that a specific number of

leading zeroes are found in the hash result. This number is then referred to as the difficulty of

the PoW. In order to reduce the variance in time it takes to calculate the PoW, a valid GNS

revocation requires that a number of different PoWs (Z, as defined below) must be found that on

average have D leading zeroes.

Given an average difficulty of D, the proofs have an expiration time of EPOCH. Applications 

calculate proofs with a difficulty that is higher than D by providing POW values where there are

(on average) more than D bits of leading zeroes. With each additional bit of difficulty, the lifetime

of the proof is prolonged by another EPOCH. Consequently, by calculating a more difficult PoW,

the lifetime of the proof -- and thus the persistence of the revocation message -- can be increased

on demand by the zone owner.

The parameters are defined as follows:

The number of PoWs that are required. Its value is fixed at 32. 

The lower limit of the average difficulty. Its value is fixed at 22. 

A single epoch. Its value is fixed at 365 days in microseconds. 

The revocation message wire format is illustrated in Figure 5.

MAY

Figure 5: The Revocation Message Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   TIMESTAMP                   |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      TTL                      |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                     POW_0                     |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                       ...                     |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                     POW_Z-1                   |
+-----------------------------------------------+
|       ZONE TYPE       |    ZONE KEY           |
+-----+-----+-----+-----+                       |
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   SIGNATURE                   |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 14



TTL:

POW_i:

ZONE TYPE:

ZONE KEY:

SIGNATURE:

SIZE:

PURPOSE:

TIMESTAMP:

Denotes the absolute 64-bit date when the revocation was computed. In microseconds since

midnight (0 hour), January 1, 1970 UTC in network byte order. This is the same value as the

timestamp used in the individual PoW calculations. 

Denotes the relative 64-bit time to live of the record in microseconds in network byte

order. The field  be set to EPOCH * 1.1. Given an average number of leading zeroes D',

then the field value  be increased up to (D'-D+1) * EPOCH * 1.1. Validators  reject

messages with lower or higher values when received. 

The values calculated as part of the PoW, in network byte order. Each POW_i  be

unique in the set of POW values. To facilitate fast verification of uniqueness, the POW values

must be given in strictly monotonically increasing order in the message. 

The 32-bit zone type corresponding to the zone key in network byte order. 

The public key zk of the zone that is being revoked and the key to be used to verify

SIGNATURE. 

A signature over a timestamp and the zone zk of the zone that is revoked and

corresponds to the key used in the PoW. The signature is created using the Sign() function of

the cryptosystem of the zone and the private key (see Section 4). 

The signature over the public key covers a 32-bit header prefixed to the timestamp and public

key fields. The header includes the key length and signature purpose. The wire format is

illustrated in Figure 6.

A 32-bit value containing the length of the signed data in bytes in network byte order. 

A 32-bit signature purpose flag. The value of this field  be 3. The value is

encoded in network byte order. It defines the context in which the signature is created so that

it cannot be reused in other parts of the protocol including possible future extensions. The

value of this field corresponds to an entry in the GANA "GNUnet Signature Purposes" registry 

. 

Field as defined in the revocation message above. 

SHOULD

MAY MAY

MUST

Figure 6: The Wire Format of the Revocation Data for Signing 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|         SIZE          |       PURPOSE (0x03)  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   TIMESTAMP                   |
+-----+-----+-----+-----+-----+-----+-----+-----+
|       ZONE TYPE       |     ZONE KEY          |
+-----+-----+-----+-----+                       |
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+

MUST

[GANA]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 15



ZONE TYPE:

ZONE KEY:

Field as defined in the revocation message above. 

Field as defined in the revocation message above. 

In order to validate a revocation, the following steps  be taken:

The signature  be verified against the zone key. 

The set of POW values  contain duplicates; this  be checked by verifying that

the values are strictly monotonically increasing. 

The average number of leading zeroes D' resulting from the provided POW values  be

greater than or equal to D. Implementers  use an integer data type to calculate or

represent D'. 

The TTL field in the revocation message is informational. A revocation  be discarded without

checking the POW values or the signature if the TTL (in combination with TIMESTAMP) indicates

that the revocation has already expired. The actual validity period of the revocation  be

determined by examining the leading zeroes in the POW values.

The validity period of the revocation is calculated as (D'-D+1) * EPOCH * 1.1. The EPOCH is

extended by 10% in order to deal with unsynchronized clocks. The validity period added on top

of the TIMESTAMP yields the expiration date. If the current time is after the expiration date, the

revocation is considered stale.

Verified revocations  be stored locally. The implementation  discard stale revocations

and evict them from the local store at any time.

Implementations  broadcast received revocations if they are valid and not stale. Should the

calculated validity period differ from the TTL field value, the calculated value  be used as

the TTL field value when forwarding the revocation message. Systems might disagree on the

current time, so implementations  use stale but otherwise valid revocations but 

broadcast them. Forwarded stale revocations  be discarded.

Any locally stored revocation  be considered during delegation record processing (see 

Section 7.3.4).

MUST

1. MUST

2. MUST NOT MUST

3. MUST

MUST NOT

MAY

MUST

MUST MAY

MUST

MUST

MAY SHOULD NOT

MAY

MUST

5. Resource Records 

A GNS implementation  provide a mechanism for creating and managing local zones as

well as a persistence mechanism (such as a local database) for resource records. A new local

zone is established by selecting a zone type and creating a zone key pair. If this mechanism is not

implemented, no zones can be published in storage (see Section 6) and name resolution is limited

to non-local start zones (see Section 7.1).

A GNS resource record holds the data of a specific record in a zone. The resource record format

is illustrated in Figure 7.

SHOULD

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 16



EXPIRATION:

SIZE:

FLAGS:

TYPE:

DATA:

CRITICAL:

Denotes the absolute 64-bit expiration date of the record. In microseconds since

midnight (0 hour), January 1, 1970 UTC in network byte order. 

Denotes the 16-bit size of the DATA field in bytes in network byte order. 

A 16-bit bit field indicating special properties of the resource record. The semantics of

the different bits are defined below. 

The 32-bit resource record type in network byte order. This type can be one of the GNS

resource records as defined in Section 5, a DNS record type as defined in , or any of

the complementary standardized DNS resource record types. Note that values below 2^16 are

reserved for 16-bit DNS resource record types allocated by IANA . Values above

2^16 are allocated by the GANA "GNS Record Types" registry . 

The variable-length resource record data payload. The content is defined by the

respective type of the resource record. 

The FLAGS field is used to indicate special properties of the resource record. An application

creating resource records  set all bits in FLAGS to 0 unless it specifically understands and

wants to set the respective flag. As additional flags can be defined in future protocol versions, if

an application or implementation encounters a flag that it does not recognize, the flag  be

ignored. However, all implementations  understand the SHADOW and CRITICAL flags

defined below. Any combination of the flags specified below is valid. Figure 8 illustrates the flag

distribution in the 16-bit FLAGS field of a resource record:

Figure 7: The Resource Record Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|    SIZE   |   FLAGS   |          TYPE         |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      DATA                     /
/                                               /
/                                               /

[RFC1035]

[RFC6895]

[GANA]

MUST

MUST

MUST

Figure 8: The Resource Record Flag Wire Format 

0           13            14      15
+--------...+-------------+-------+---------+
| Reserved  |SUPPLEMENTAL |SHADOW |CRITICAL |
+--------...+-------------+-------+---------+

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 17



SHADOW:

SUPPLEMENTAL:

If this flag is set, it indicates that processing is critical. Implementations that do not support

the record type or are otherwise unable to process the record  abort resolution upon

encountering the record in the resolution process. 

If this flag is set, this record  be ignored by resolvers unless all (other) records

of the same record type have expired. Used to allow zone publishers to facilitate good

performance when records change by allowing them to put future values of records into

storage. This way, future values can propagate and can be cached before the transition

becomes active. 

This is a supplemental record. It is provided in addition to the other records.

This flag indicates that this record is not explicitly managed alongside the other records under

the respective name but might be useful for the application. 

MUST

MUST

5.1. Zone Delegation Records 

This section defines the initial set of zone delegation record types. Any implementation 

support all zone types defined here and  support any number of additional delegation

records defined in the GANA "GNS Record Types" registry (see ). Not supporting some

zone types will result in resolution failures if the respective zone type is encountered. This can be

a valid choice if some zone delegation record types have been determined to be

cryptographically insecure. Zone delegation records  be stored and published under

the apex label. A zone delegation record type value is the same as the respective ztype value. The

ztype defines the cryptographic primitives for the zone that is being delegated to. A zone

delegation record payload contains the public key of the zone to delegate to. A zone delegation

record  have the CRITICAL flag set and  be the only non-supplemental record under a

label. There  be inactive records of the same type that have the SHADOW flag set in order to

facilitate smooth key rollovers.

In the following, "||" is the concatenation operator of two byte strings. The algorithm

specification uses character strings such as GNS labels or constant values. When used in

concatenations or as input to functions, the null-terminator of the character strings  be

included.

SHOULD

MAY

[GANA]

MUST NOT

MUST MUST

MAY

MUST NOT

5.1.1. PKEY 

In GNS, a delegation of a label to a zone of type "PKEY" is represented through a PKEY record.

The PKEY DATA entry wire format is illustrated in Figure 9.

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 18



PUBLIC KEY:

d:

zk:

p:

G:

L:

KeyGen():

A 256-bit Ed25519 public key. 

For PKEY zones, the zone key material is derived using the curve parameters of the twisted

Edwards representation of Curve25519  (the reasoning behind choosing this curve can

be found in Section 9.3) with the ECDSA scheme . The following naming convention is

used for the cryptographic primitives of PKEY zones:

A 256-bit Ed25519 private key (private scalar). 

The Ed25519 public zone key corresponding to d. 

The prime of edwards25519 as defined in , i.e., 2^255 - 19. 

The group generator (X(P),Y(P)). With X(P),Y(P) of edwards25519 as defined in . 

The order of the prime-order subgroup of edwards25519 as defined in . 

The generation of the private scalar d and the curve point zk := d*G (where G is the

group generator of the elliptic curve) as defined in  represents the

KeyGen() function. 

The zone type and zone key of a PKEY are 4 + 32 bytes in length. This means that a zTLD will

always fit into a single label and does not need any further conversion. Given a label, the output

zk' of the ZKDF(zk,label) function is calculated as follows for PKEY zones:

The PKEY cryptosystem uses an HMAC-based key derivation function (HKDF) as defined in 

, using SHA-512  for the extraction phase and SHA-256  for the

expansion phase. PRK_h is key material retrieved using an HKDF using the string "key-

derivation" as the salt and the zone key as the initial keying material. h is the 512-bit HKDF

Figure 9: The PKEY Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   PUBLIC KEY                  |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

[RFC7748]

[RFC6979]

[RFC7748]

[RFC7748]

[RFC7748]

Section 2.2 of [RFC6979]

ZKDF(zk,label):
  PRK_h := HKDF-Extract ("key-derivation", zk)
  h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)
  zk' := (h mod L) * zk
  return zk'

[RFC5869] [RFC6234] [RFC6234]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 19

https://www.rfc-editor.org/rfc/rfc6979#section-2.2


expansion result and must be interpreted in network byte order. The expansion information

input is a concatenation of the label and the string "gns". The multiplication of zk with h is a

point multiplication, while the multiplication of d with h is a scalar multiplication.

The Sign() and Verify() functions for PKEY zones are implemented using 512-bit ECDSA

deterministic signatures as specified in . The same functions can be used for derived

keys:

A signature (R,S) is valid if the following holds:

The S-Encrypt() and S-Decrypt() functions use AES in counter mode as defined in  (CTR-

AES256):

The key K and counter IV (Initialization Vector) are derived from the record label and the zone

key zk, using an HKDF as defined in . SHA-512  is used for the extraction

phase and SHA-256  for the expansion phase. The output keying material is 32 bytes

(256 bits) for the symmetric key and 4 bytes (32 bits) for the nonce. The symmetric key K is a 256-

bit AES key .

[RFC6979]

SignDerived(d,label,message):
  zk := d * G
  PRK_h := HKDF-Extract ("key-derivation", zk)
  h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)
  d' := (h * d) mod L
  return Sign(d',message)

VerifyDerived(zk,label,message,signature):
  zk' := ZKDF(zk,label)
  return Verify(zk',message,signature)

[MODES]

S-Encrypt(zk,label,expiration,plaintext):
  PRK_k := HKDF-Extract ("gns-aes-ctx-key", zk)
  PRK_n := HKDF-Extract ("gns-aes-ctx-iv", zk)
  K := HKDF-Expand (PRK_k, label, 256 / 8)
  NONCE := HKDF-Expand (PRK_n, label, 32 / 8)
  IV := NONCE || expiration || 0x0000000000000001
  return CTR-AES256(K, IV, plaintext)

S-Decrypt(zk,label,expiration,ciphertext):
  PRK_k := HKDF-Extract ("gns-aes-ctx-key", zk)
  PRK_n := HKDF-Extract ("gns-aes-ctx-iv", zk)
  K := HKDF-Expand (PRK_k, label, 256 / 8)
  NONCE := HKDF-Expand (PRK_n, label, 32 / 8)
  IV := NONCE || expiration || 0x0000000000000001
  return CTR-AES256(K, IV, ciphertext)

[RFC5869] [RFC6234]

[RFC6234]

[RFC3826]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 20



The nonce is combined with a 64-bit IV and a 32-bit block counter as defined in . The

block counter begins with a value of 1, and it is incremented to generate subsequent portions of

the key stream. The block counter is a 32-bit integer value in network byte order. The IV is the

expiration time of the resource record block in network byte order. The resulting counter (IV)

wire format is illustrated in Figure 10.

[RFC3686]

Figure 10: The Block Counter Wire Format 

0     8     16    24    32
+-----+-----+-----+-----+
|         NONCE         |
+-----+-----+-----+-----+
|       EXPIRATION      |
|                       |
+-----+-----+-----+-----+
|      BLOCK COUNTER    |
+-----+-----+-----+-----+

PUBLIC KEY:

d:

a:

zk:

5.1.2. EDKEY 

In GNS, a delegation of a label to a zone of type "EDKEY" is represented through an EDKEY

record. The EDKEY DATA entry wire format is illustrated in Figure 11.

A 256-bit EdDSA zone key. 

For EDKEY zones, the zone key material is derived using the curve parameters of the twisted

Edwards representation of Curve25519  (a.k.a. Ed25519) with the Ed25519 scheme 

 as specified in . The following naming convention is used for the

cryptographic primitives of EDKEY zones:

A 256-bit EdDSA private key. 

An integer derived from d using the SHA-512 hash function as defined in . 

The EdDSA public key corresponding to d. It is defined as the curve point a*G where G is the

group generator of the elliptic curve as defined in . 

Figure 11: The EDKEY DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   PUBLIC KEY                  |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

[RFC7748]

[ed25519] [RFC8032]

[RFC8032]

[RFC8032]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 21



p:

G:

L:

KeyGen():

The prime of edwards25519 as defined in , i.e., 2^255 - 19. 

The group generator (X(P),Y(P)). With X(P),Y(P) of edwards25519 as defined in . 

The order of the prime-order subgroup of edwards25519 as defined in . 

The generation of the private key d and the associated public key zk := a*G where G is

the group generator of the elliptic curve and a is an integer derived from d using the SHA-512

hash function as defined in  represents the KeyGen() function. 

The zone type and zone key of an EDKEY are 4 + 32 bytes in length. This means that a zTLD will

always fit into a single label and does not need any further conversion.

The "EDKEY" ZKDF instantiation is based on . The calculation of a is defined in 

. Given a label, the output of the ZKDF function is calculated as follows:

Implementers  employ a constant-time scalar multiplication for the constructions above

to protect against timing attacks. Otherwise, timing attacks could leak private key material if an

attacker can predict when a system starts the publication process.

The EDKEY cryptosystem uses an HKDF as defined in , using SHA-512  for the

extraction phase and HMAC-SHA-256  for the expansion phase. PRK_h is key material

retrieved using an HKDF using the string "key-derivation" as the salt and the zone key as the

initial keying material. The blinding factor h is the 512-bit HKDF expansion result. The expansion

information input is a concatenation of the label and the string "gns". The result of the HKDF

must be clamped and interpreted in network byte order. a is the 256-bit integer corresponding to

the 256-bit private key d. The multiplication of zk with h is a point multiplication, while the

division and multiplication of a and a1 with the cofactor are integer operations.

The Sign(d,message) and Verify(zk,message,signature) procedures  be implemented as

defined in .

Signatures for EDKEY zones use a derived private scalar d'; this is not compliant with .

As the corresponding private key to the derived private scalar is not known, it is not possible to

deterministically derive the signature part R according to . Instead, signatures  be

generated as follows for any given message and private zone key: a nonce is calculated from the

highest 32 bytes of the expansion of the private key d and the blinding factor h. The nonce is then

[RFC8032]

[RFC8032]

[RFC8032]

Section 5.1.5 of [RFC8032]

[Tor224] Section

5.1.5 of [RFC8032]

ZKDF(zk,label):
  /* Calculate the blinding factor */
  PRK_h := HKDF-Extract ("key-derivation", zk)
  h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)
  /* Ensure that h == h mod L */
  h[31] &= 7

  zk' := h * zk
  return zk'

SHOULD

[RFC5869] [RFC6234]

[RFC6234]

MUST

[RFC8032]

[RFC8032]

[RFC8032] MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 22

https://www.rfc-editor.org/rfc/rfc8032#section-5.1.5
https://www.rfc-editor.org/rfc/rfc8032#section-5.1.5
https://www.rfc-editor.org/rfc/rfc8032#section-5.1.5


hashed with the message to r. This way, the full derivation path is included in the calculation of

the R value of the signature, ensuring that it is never reused for two different derivation paths or

messages.

A signature (R,S) is valid if the following holds:

The S-Encrypt() and S-Decrypt() functions use XSalsa20 as defined in  (XSalsa20-

Poly1305):

SignDerived(d,label,message):
  /* Key expansion */
  dh := SHA-512 (d)
  /* EdDSA clamping */
  a := dh[0..31]
  a[0] &= 248
  a[31] &= 127
  a[31] |= 64
  /* Calculate zk corresponding to d */
  zk := a * G

  /* Calculate blinding factor */
  PRK_h := HKDF-Extract ("key-derivation", zk)
  h := HKDF-Expand (PRK_h, label || "gns", 512 / 8)
  /* Ensure that h == h mod L */
  h[31] &= 7

  zk' := h * zk
  a1 := a >> 3
  a2 := (h * a1) mod L
  d' := a2 << 3
  nonce := SHA-256 (dh[32..63] || h)
  r := SHA-512 (nonce || message)
  R := r * G
  S := r + SHA-512(R || zk' || message) * d' mod L
  return (R,S)

VerifyDerived(zk,label,message,signature):
  zk' := ZKDF(zk,label)
  (R,S) := signature
  return S * G == R + SHA-512(R, zk', message) * zk'

[XSalsa20]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 23



The result of the XSalsa20-Poly1305 encryption function is the encrypted ciphertext followed by

the 128-bit authentication tag. Accordingly, the length of encrypted data equals the length of the

data plus the 16 bytes of the authentication tag.

The key K and counter IV are derived from the record label and the zone key zk using an HKDF

as defined in . SHA-512  is used for the extraction phase and SHA-256 

 for the expansion phase. The output keying material is 32 bytes (256 bits) for the

symmetric key and 16 bytes (128 bits) for the NONCE. The symmetric key K is a 256-bit XSalsa20

key . No additional authenticated data (AAD) is used.

The nonce is combined with an 8-byte IV. The IV is the expiration time of the resource record

block in network byte order. The resulting counter (IV) wire format is illustrated in Figure 12.

S-Encrypt(zk,label,expiration,plaintext):
  PRK_k := HKDF-Extract ("gns-xsalsa-ctx-key", zk)
  PRK_n := HKDF-Extract ("gns-xsalsa-ctx-iv", zk)
  K := HKDF-Expand (PRK_k, label, 256 / 8)
  NONCE := HKDF-Expand (PRK_n, label, 128 / 8)
  IV := NONCE || expiration
  return XSalsa20-Poly1305(K, IV, plaintext)

S-Decrypt(zk,label,expiration,ciphertext):
  PRK_k := HKDF-Extract ("gns-xsalsa-ctx-key", zk)
  PRK_n := HKDF-Extract ("gns-xsalsa-ctx-iv", zk)
  K := HKDF-Expand (PRK_k, label, 256 / 8)
  NONCE := HKDF-Expand (PRK_n, label, 128 / 8)
  IV := NONCE || expiration
  return XSalsa20-Poly1305(K, IV, ciphertext)

[RFC5869] [RFC6234]

[RFC6234]

[XSalsa20]

Figure 12: The Counter Block Initialization Vector 

0     8     16    24    32
+-----+-----+-----+-----+
|         NONCE         |
|                       |
|                       |
|                       |
+-----+-----+-----+-----+
|       EXPIRATION      |
|                       |
+-----+-----+-----+-----+

5.2. Redirection Records 

Redirect records are used to redirect resolution. Any implementation  support all

redirection record types defined here and  support any number of additional redirection

records defined in the GANA "GNS Record Types" registry . Redirection records 

have the CRITICAL flag set. Not supporting some record types can result in resolution failures.

SHOULD

MAY

[GANA] MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 24



This can be a valid choice if some redirection record types have been determined to be insecure,

or if an application has reasons to not support redirection to DNS for reasons such as complexity

or security. Redirection records  be stored and published under the apex label.MUST NOT

REDIRECT NAME:

5.2.1. REDIRECT 

A REDIRECT record is the GNS equivalent of a CNAME record in DNS. A REDIRECT record 

be the only non-supplemental record under a label. There  be inactive records of the same

type that have the SHADOW flag set in order to facilitate smooth changes of redirection targets.

No other records are allowed. Details on the processing of this record are provided in Section

7.3.1. A REDIRECT DATA entry is illustrated in Figure 13.

The name to continue with. The value of a redirect record can be a regular

name or a relative name. Relative GNS names are indicated by an extension label (U+002B

("+")) as the rightmost label. The string is UTF-8 encoded and zero terminated. 

MUST

MAY

Figure 13: The REDIRECT DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   REDIRECT NAME               |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

5.2.2. GNS2DNS 

A GNS2DNS record delegates resolution to DNS. The resource record contains a DNS name for the

resolver to continue with in DNS followed by a DNS server. Both names are in the format defined

in  for DNS names. There  be multiple GNS2DNS records under a label. There 

also be DNSSEC DS records or any other records used to secure the connection with the DNS

servers under the same label. There  be inactive records of the same type or types that have

the SHADOW flag set in order to facilitate smooth changes of redirection targets. No other non-

supplemental record types are allowed in the same record set. A GNS2DNS DATA entry is

illustrated in Figure 14.

[RFC1034] MAY MAY

MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 25



NAME:

DNS SERVER NAME:

The name to continue with in DNS. The value is UTF-8 encoded and zero terminated. 

The DNS server to use. This value can be an IPv4 address in dotted-decimal

form, an IPv6 address in colon-hexadecimal form, or a DNS name. It can also be a relative

GNS name ending with a "+" as the rightmost label. The implementation  check the

string syntactically for an IP address in the respective notation before checking for a relative

GNS name. If all three checks fail, the name  be treated as a DNS name. The value is

UTF-8 encoded and zero terminated. 

NOTE: If an application uses DNS names obtained from GNS2DNS records in a DNS request, they 

 first be converted to an IDNA-compliant representation .

Figure 14: The GNS2DNS DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      NAME                     |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                 DNS SERVER NAME               |
/                                               /
/                                               /
|                                               |
+-----------------------------------------------+

MUST

MUST

MUST [RFC5890]

5.3. Auxiliary Records 

This section defines the initial set of auxiliary GNS record types. Any implementation  be

able to process the specified record types according to Section 7.3.

SHOULD

5.3.1. LEHO 

The LEHO (LEgacy HOstname) record is used to provide a hint for legacy hostnames: applications

can use the GNS to look up IPv4 or IPv6 addresses of Internet services. However, connecting to

such services sometimes not only requires the knowledge of an address and port but also

requires the canonical DNS name of the service to be transmitted over the transport protocol. In

GNS, legacy hostname records provide applications the DNS name that is required to establish a

connection to such a service. The most common use case is HTTP virtual hosting and TLS Server

Name Indication , where a DNS name must be supplied in the HTTP "Host"-header and

the TLS handshake, respectively. Using a GNS name in those cases might not work, as it might not

be globally unique. Furthermore, even if uniqueness is not an issue, the legacy service might not

even be aware of GNS.

A LEHO resource record is expected to be found together in a single resource record with an IPv4

or IPv6 address. A LEHO DATA entry is illustrated in Figure 15.

[RFC6066]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 26



LEGACY HOSTNAME: A UTF-8 string (which is not zero terminated) representing the legacy

hostname. 

NOTE: If an application uses a LEHO value in an HTTP request header (e.g., a "Host:" header), it 

 be converted to an IDNA-compliant representation .

Figure 15: The LEHO DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                 LEGACY HOSTNAME               |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

MUST [RFC5890]

NICKNAME:

5.3.2. NICK 

Nickname records can be used by zone administrators to publish a label that a zone prefers to

have used when it is referred to. This is a suggestion for other zones regarding what label to use

when creating a delegation record (Section 5.1) containing this zone key. This record 

only be stored locally under the apex label "@" but  be returned with record sets under any

label as a supplemental record. Section 7.3.5 details how a resolver must process supplemental

and non-supplemental NICK records. A NICK DATA entry is illustrated in Figure 16.

A UTF-8 string (which is not zero terminated) representing the preferred label of

the zone. This string  be a valid GNS label. 

SHOULD

MAY

Figure 16: The NICK DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  NICKNAME                     |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

MUST

5.3.3. BOX 

GNS lookups are expected to return all of the required useful information in one record set. This

avoids unnecessary additional lookups and cryptographically ties together information that

belongs together, making it impossible for an adversarial storage entity to provide partial

answers that might omit information critical for security.

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 27



PROTO:

SVC:

TYPE:

RECORD DATA:

This general strategy is incompatible with the special labels used by DNS for SRV and TLSA

records. Thus, GNS defines the BOX record format to box up SRV and TLSA records and include

them in the record set of the label they are associated with. For example, a TLSA record for

"_https._tcp.example.org" will be stored in the record set of "example.org" as a BOX record with

service (SVC) 443 (https), protocol (PROTO) 6 (tcp), and record TYPE "TLSA". For reference, see

also . A BOX DATA entry is illustrated in Figure 17.

The 16-bit protocol number in network byte order. Values below 2^8 are reserved for 8-

bit Internet Protocol numbers allocated by IANA  (e.g., 6 for TCP). Values above 2^8

are allocated by the GANA "GNUnet Overlay Protocols" registry . 

The 16-bit service value of the boxed record in network byte order. In the case of TCP and

UDP, it is the port number. 

The 32-bit record type of the boxed record in network byte order. 

A variable-length field containing the "DATA" format of TYPE as defined for the

respective TYPE. Thus, for TYPE values below 2^16, the format is the same as the respective

record type's binary format in DNS. 

[RFC2782]

Figure 17: The BOX DATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|   PROTO   |    SVC    |       TYPE            |
+-----------+-----------------------------------+
|                 RECORD DATA                   |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

[RFC5237]

[GANA]

6. Record Encoding for Remote Storage 

Any API that allows storing a block under a 512-bit key and retrieving one or more blocks from a

key can be used by an implementation for remote storage. To be useful, the API  permit

storing at least 176 byte blocks to be able to support the defined zone delegation record

encodings and  allow at least 1024 byte blocks. In the following, it is assumed that an

implementation realizes two procedures on top of storage:

A GNS implementation publishes blocks in accordance with the properties and

recommendations of the underlying remote storage. This can include a periodic refresh

operation to preserve the availability of published blocks.

MUST

SHOULD

PUT(key,block)
GET(key) -> block

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 28



There is no mechanism for explicitly deleting individual blocks from remote storage. However,

blocks include an EXPIRATION field, which guides remote storage implementations to decide

when to delete blocks. Given multiple blocks for the same key, remote storage implementations 

 try to preserve and return the block with the largest EXPIRATION value.

All resource records from the same zone sharing the same label are encrypted and published

together in a single resource records block (RRBLOCK) in the remote storage under a key q, as

illustrated in Figure 18. A GNS implementation  include expired resource records in

blocks. An implementation  use the PUT storage procedure when record sets change to

update the zone contents. Implementations  ensure that the EXPIRATION fields of

RRBLOCKs increase strictly monotonically for every change, even if the smallest expiration time

of records in the block does not.

Storage key derivation and records block creation are specified in the following sections and

illustrated in Figure 19.

SHOULD

MUST NOT

MUST

MUST

Figure 18: Management and Publication of Local Zones in Distributed Storage 

                           Local Host          |   Remote
                                               |   Storage
                                               |
                                               |    +---------+
                                               |   /         /|
                                               |  +---------+ |
+-----------+                                  |  |         | |
|           |       +---------+PUT(q, RRBLOCK) |  | Record  | |
|    User   |       |  Zone   |----------------|->| Storage | |
|           |       | Master  |                |  |         |/
+-----------+       +---------+                |  +---------+
     |                     A                   |
     |                     | Zone records      |
     |                     | grouped by label  |
     |                     |                   |
     |                 +---------+             |
     |Create / Delete /    |    /|             |
     |and Update     +---------+ |             |
     |Local Zones    |         | |             |
     |               |  Local  | |             |
     +-------------->|  Zones  | |             |
                     |         |/              |
                     +---------+               |

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 29



Figure 19: Storage Key and Records Block Creation Overview 

+----------+ +-------+ +------------+ +-------------+
| Zone Key | | Label | | Record Set | | Private Key |
+----------+ +-------+ +------------+ +-------------+
    |          |            |               |
    |          |            v               |
    |          |           +-----------+    |
    |          +---------->| S-Encrypt |    |
    +----------|---------->+-----------+    |
    |          |               |    |       |
    |          |               |    v       v
    |          |               |   +-------------+
    |          +---------------|-->| SignDerived |
    |          |               |   +-------------+
    |          |               |        |
    |          v               v        v
    |      +------+        +---------------+
    +----->| ZKDF |------->| Records Block |
           +------+        +---------------+
              |
              v
           +------+        +-------------+
           | Hash |------->| Storage Key |
           +------+        +-------------+

label:

zk:

q:

6.1. The Storage Key 

The storage key is derived from the zone key and the respective label of the contained records.

The required knowledge of both the zone key and the label in combination with the similarly

derived symmetric secret keys and blinded zone keys ensures query privacy (see 

).

Given a label, the storage key q is derived as follows:

A UTF-8 string under which the resource records are published. 

The zone key. 

The 512-bit storage key under which the resource records block is published. It is the

SHA-512 hash  over the derived zone key. 

[RFC8324], 

Section 3.5

q := SHA-512 (ZKDF(zk, label))

[RFC6234]

6.2. Plaintext Record Data (RDATA) 

GNS records from a zone are grouped by their labels such that all records under the same label

are published together as a single block in storage. Such grouped record sets  be paired with

supplemental records.

MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 30

https://www.rfc-editor.org/rfc/rfc8324#section-3.5


EXPIRATION, SIZE, TYPE, FLAGS, and DATA:

PADDING:

Record data (RDATA) is the format used to encode such a group of GNS records. The binary

format of RDATA is illustrated in Figure 20.

Definitions for these fields are provided below 

Figure 7 in Section 5. 

When serializing records into RDATA, a GNS implementation  ensure that the

size of the RDATA is a power of two using this field. The field  be set to zero and  be

ignored on receipt. As a special exception, record sets with (only) a zone delegation record

type are never padded. 

Figure 20: The RDATA Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                 EXPIRATION                    |
+-----+-----+-----+-----+-----+-----+-----+-----+
|    SIZE   |    FLAGS  |        TYPE           |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      DATA                     /
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|    SIZE   |    FLAGS  |        TYPE           |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                     DATA                      /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+
/                     PADDING                   /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+

MUST

MUST MUST

6.3. The Resource Records Block 

The resource records grouped in an RDATA are encrypted using the S-Encrypt() function defined

by the zone type of the zone to which the resource records belong and prefixed with metadata

into a resource record block (RRBLOCK) for remote storage. The GNS RRBLOCK wire format is

illustrated in Figure 21.

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 31



SIZE:

ZONE TYPE:

ZONE KEY (BLINDED):

SIGNATURE:

EXPIRATION:

BDATA:

A 32-bit value containing the length of the block in bytes in network byte order. Despite

the message format's use of a 32-bit value, implementations  refuse to publish blocks

beyond a certain size significantly below the theoretical block size limit of 4 GB. 

The 32-bit ztype in network byte order. 

The blinded zone key "ZKDF(zk, label)" to be used to verify SIGNATURE.

The length and format of the blinded public key depend on the ztype. 

The signature is computed over the EXPIRATION and BDATA fields as shown in 

Figure 22. The length and format of the signature depend on the ztype. The signature is

created using the SignDerived() function of the cryptosystem of the zone (see Section 4). 

Specifies when the RRBLOCK expires and the encrypted block  be

removed from storage and caches, as it is likely stale. However, applications  continue to

use non-expired individual records until they expire. The value  be set to the maximum

of the expiration time of the resource record contained within this block with the smallest

expiration time and the previous EXPIRATION value (if any) plus one to ensure strict

monotonicity (see Section 9.3). If the RDATA includes shadow records, then the maximum

expiration time of all shadow records with matching type and the expiration times of the non-

shadow records is considered. This is a 64-bit absolute date in microseconds since midnight (0

hour), January 1, 1970 UTC in network byte order. 

The encrypted RDATA computed using S-Encrypt() with the zone key, label, and

expiration time as additional inputs. Its ultimate size and content are determined by the S-

Encrypt() function of the ztype. 

Figure 21: The RRBLOCK Wire Format 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|          SIZE         |    ZONE TYPE          |
+-----+-----+-----+-----+-----+-----+-----+-----+
/                  ZONE KEY                     /
/                  (BLINDED)                    /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   SIGNATURE                   |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    BDATA                      /
/                                               /
/                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+

MAY

SHOULD

MAY

MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 32



SIZE:

PURPOSE:

EXPIRATION:

BDATA:

The signature over the public key covers a 32-bit pseudo header conceptually prefixed to the

EXPIRATION and BDATA fields. The wire format is illustrated in Figure 22.

A 32-bit value containing the length of the signed data in bytes in network byte order. 

A 32-bit signature purpose flag in network byte order. The value of this field  be

15. It defines the context in which the signature is created so that it cannot be reused in other

parts of the protocol including possible future extensions. The value of this field corresponds

to an entry in the GANA "GNUnet Signature Purposes" registry . 

Field as defined in the RRBLOCK message above. 

Field as defined in the RRBLOCK message above. 

Figure 22: The Wire Format Used for Creating the Signature of the RRBLOCK 

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|         SIZE          |       PURPOSE (0x0F)  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    BDATA                      |
/                                               /
/                                               /
+-----+-----+-----+-----+-----+-----+-----+-----+

MUST

[GANA]

7. Name Resolution 

Names in GNS are resolved by recursively querying the record storage. Recursive in this context

means that a resolver does not provide intermediate results for a query to the application.

Instead, it  respond to a resolution request with either the requested resource record or an

error message if resolution fails. Figure 23 illustrates how an application requests the lookup of a

GNS name (1). The application  provide a desired record type to the resolver. Subsequently, a

Start Zone is determined (2) and the recursive resolution process started. This is where the

desired record type is used to guide processing. For example, if a zone delegation record type is

requested, the resolution of the apex label in that zone must be skipped, as the desired record is

already found. Details on how the resolution process is initiated and each iterative result (3a,3b)

in the resolution is processed are provided in the sections below. The results of the lookup are

eventually returned to the application (4). The implementation  filter the returned

resource record sets according to the desired record type. Filtering of record sets is typically

done by the application.

MUST

MAY

MUST NOT

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 33



Figure 23: The Recursive GNS Resolution Process 

                           Local Host             |   Remote
                                                  |   Storage
                                                  |
                                                  |    +---------+
                                                  |   /         /|
                                                  |  +---------+ |
+-----------+ (1) Name +----------+               |  |         | |
|           | Lookup   |          | (3a) GET(q)   |  | Record  | |
|Application|----------| Resolver |---------------|->| Storage | |
|           |<---------|          |<--------------|--|         |/
+-----------+ (4)      +----------+ (3b) RRBLOCK  |  +---------+
              Records     A                       |
                          |                       |
     (2) Determination of |                       |
         Start Zone       |                       |
                          |                       |
                       +---------+                |
                      /   |     /|                |
                     +---------+ |                |
                     |         | |                |
                     |  Start  | |                |
                     |  Zones  | |                |
                     |         |/                 |
                     +---------+                  |

7.1. Start Zones 

The resolution of a GNS name starts by identifying the start zone suffix. Once the start zone suffix

is identified, recursive resolution of the remainder of the name is initiated (see Section 7.2).

There are two types of start zone suffixes: zTLDs and local suffix-to-zone mappings. The choice of

available suffix-to-zone mappings is at the sole discretion of the local system administrator or

user. This property addresses the issue of a single hierarchy with a centrally controlled root and

the related issue of distribution and management of root servers in DNS (see Sections 3.12 and 

3.10 of , respectively).

For names ending with a zTLD, the start zone is explicitly given in the suffix of the name to

resolve. In order to ensure uniqueness of names with zTLDs, any implementation  use the

given zone as the start zone. An implementation  first try to interpret the rightmost label of

the given name as the beginning of a zTLD (see Section 4.1). If the rightmost label cannot be

(partially) decoded or if it does not indicate a supported ztype, the name is treated as a normal

name and start zone discovery  continue with finding a local suffix-to-zone mapping. If a

valid ztype can be found in the rightmost label, the implementation  try to synthesize and

decode the zTLD to retrieve the start zone key according to Section 4.1. If the zTLD cannot be

synthesized or decoded, the resolution of the name fails and an error is returned to the

application. Otherwise, the zone key  be used as the start zone:

[RFC8324]

MUST

MUST

MUST

MUST

MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 34

https://www.rfc-editor.org/rfc/rfc8324#section-3.12
https://www.rfc-editor.org/rfc/rfc8324#section-3.10


For names not ending with a zTLD, the resolver  determine the start zone through a local

suffix-to-zone mapping. Suffix-to-zone mappings  be configurable through a local

configuration file or database by the user or system administrator. A suffix  consist of

multiple GNS labels concatenated with a label separator. If multiple suffixes match the name to

resolve, the longest matching suffix  be used. The suffix length of two results  be

equal. This indicates a misconfiguration, and the implementation  return an error. The

following is a non-normative example mapping of start zones:

The process given above  be supplemented with other mechanisms if the particular

application requires a different process. If no start zone can be discovered, resolution  fail

and an error  be returned to the application.

Example name: www.example.<zTLD>
=> Start zone: zk of type ztype
=> Name to resolve from start zone: www.example

MUST

MUST

MAY

MUST MUST NOT

MUST

Example name: www.example.xyz.gns.alt
Local suffix mappings:
xyz.gns.alt = zTLD0 := Base32GNS(ztype0||zk0)
example.xyz.gns.alt = zTLD1 := Base32GNS(ztype1||zk1)
example.com.gns.alt = zTLD2 := Base32GNS(ztype2||zk2)
...
=> Start zone: zk1
=> Name to resolve from start zone: www

MAY

MUST

MUST

7.2. Recursion 

In each step of the recursive name resolution, there is an authoritative zone zk and a name to

resolve. The name  be empty. If the name is empty, it is interpreted as the apex label "@".

Initially, the authoritative zone is the start zone.

From here, the following steps are recursively executed, in order:

Extract the rightmost label from the name to look up. 

Calculate q using the label and zk as defined in Section 6.1. 

Perform a storage query GET(q) to retrieve the RRBLOCK. 

Check that (a) the block is not expired, (b) the SHA-512 hash of the derived authoritative zone

key zk' from the RRBLOCK matches the query q, and (c) the signature is valid. If any of these

tests fail, the RRBLOCK  be ignored and, if applicable, the storage lookup GET(q) 

continue to look for other RRBLOCKs. 

Obtain the RDATA by decrypting the BDATA contained in the RRBLOCK using S-Decrypt() as

defined by the zone type, effectively inverting the process described in Section 6.3. 

Once a well-formed block has been decrypted, the records from RDATA are subjected to record

processing.

MAY

1. 

2. 

3. 

4. 

MUST MUST

5. 

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 35



Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

7.3. Record Processing 

In record processing, only the valid records obtained are considered. To filter records by validity,

the resolver  at least check the expiration time and the FLAGS field of the respective record.

Specifically, the resolver  disregard expired records. Furthermore, SHADOW and

SUPPLEMENTAL flags can also exclude records from being considered. If the resolver encounters

a record with the CRITICAL flag set and does not support the record type, the resolution  be

aborted and an error  be returned. Information indicating that the critical record could not

be processed  be returned in the error description. The implementation  choose not

to return the reason for the failure, merely complicating troubleshooting for the user.

The next steps depend on the context of the name that is being resolved:

If the filtered record set consists of a single REDIRECT record, the remainder of the

name is prepended to the REDIRECT data and the recursion is started again from the resulting

name. Details are provided in Section 7.3.1. 

If the filtered record set consists exclusively of one or more GNS2DNS records,

resolution continues with DNS. Details are provided in Section 7.3.2. 

If the remainder of the name to be resolved is of the format "_SERVICE._PROTO" and the

record set contains one or more matching BOX records, the records in the BOX records are the

final result and the recursion is concluded as described in Section 7.3.3. 

If the current record set consists of a single delegation record, resolution of the

remainder of the name is delegated to the target zone as described in Section 7.3.4. 

If the remainder of the name to resolve is empty, the record set is the final result. If any

NICK records are in the final result set, they  first be processed according to Section

7.3.5. Otherwise, the record result set is directly returned as the final result. 

Finally, if none of the above cases are applicable, resolution fails and the resolver  return

an empty record set.

MUST

MUST

MUST

MUST

SHOULD MAY

MUST

MUST

7.3.1. REDIRECT 

If the remaining name is empty and the desired record type is REDIRECT, the resolution

concludes with the REDIRECT record. If the rightmost label of the redirect name is the extension

label (U+002B ("+")), resolution continues in GNS with the new name in the current zone.

Otherwise, the resulting name is resolved via the default operating system name resolution

process. This can in turn trigger a GNS name resolution process, depending on the system

configuration. If resolution continues in DNS, the name  first be converted to an IDNA-

compliant representation .

MUST

[RFC5890]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 36



In order to prevent infinite loops, the resolver  implement loop detection or limit the

number of recursive resolution steps. The loop detection  be effective even if a REDIRECT

found in GNS triggers subsequent GNS lookups via the default operating system name resolution

process.

MUST

MUST

7.3.2. GNS2DNS 

When a resolver encounters one or more GNS2DNS records, the remaining name is empty, and

the desired record type is GNS2DNS, the GNS2DNS records are returned.

Otherwise, it is expected that the resolver first resolves the IP addresses of the specified DNS

name servers. The DNS name  be converted to an IDNA-compliant representation 

for resolution in DNS. GNS2DNS records  contain numeric IPv4 or IPv6 addresses, allowing

the resolver to skip this step. The DNS server names might themselves be names in GNS or DNS.

If the rightmost label of the DNS server name is the extension label (U+002B ("+")), the rest of the

name is to be interpreted relative to the zone of the GNS2DNS record. If the DNS server name

ends in a label representation of a zone key, the DNS server name is to be resolved against the

GNS zone zk.

Multiple GNS2DNS records can be stored under the same label, in which case the resolver 

try all of them. The resolver  try them in any order or even in parallel. If multiple GNS2DNS

records are present, the DNS name  be identical for all of them. Otherwise, it is not clear

which name the resolver is supposed to follow. If different DNS names are present, the resolution

fails and an appropriate error  be returned to the application.

If there are DNSSEC DS records or any other records used to secure the connection with the DNS

servers stored under the label, the DNS resolver  use them to secure the connection with

the DNS server.

Once the IP addresses of the DNS servers have been determined, the DNS name from the

GNS2DNS record is appended to the remainder of the name to be resolved and is resolved by

querying the DNS name server(s). The synthesized name has to be converted to an IDNA-

compliant representation  for resolution in DNS. If such a conversion is not possible,

the resolution  be aborted and an error  be returned. Information indicating that the

critical record could not be processed  be returned in the error description. The

implementation  choose not to return the reason for the failure, merely complicating

troubleshooting for the user.

As the DNS servers specified are possibly authoritative DNS servers, the GNS resolver 

support recursive DNS resolution and  delegate this to the authoritative DNS servers.

The first successful recursive name resolution result is returned to the application. In addition,

the resolver  return the queried DNS name as a supplemental LEHO record (see Section

5.3.1) with a relative expiration time of one hour.

Once the transition from GNS to DNS is made through a GNS2DNS record, there is no "going

back". The (possibly recursive) resolution of the DNS name  delegate back into GNS and

should only follow the DNS specifications. For example, names contained in DNS CNAME records 

 be interpreted by resolvers that support both DNS and GNS as GNS names.

MUST [RFC5890]

MAY

MUST

MAY

MUST

SHOULD

SHOULD

[RFC5890]

MUST MUST

SHOULD

MAY

MUST

MUST NOT

SHOULD

MUST NOT

MUST NOT

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 37



GNS resolvers  offer a configuration option to disable DNS processing to avoid

information leakage and provide a consistent security profile for all name resolutions. Such

resolvers would return an empty record set upon encountering a GNS2DNS record during the

recursion. However, if GNS2DNS records are encountered in the record set for the apex label and

a GNS2DNS record is explicitly requested by the application, such records  still be returned,

even if DNS support is disabled by the GNS resolver configuration.

SHOULD

MUST

7.3.3. BOX 

When a BOX record is received, a GNS resolver must unbox it if the name to be resolved

continues with "_SERVICE._PROTO". Otherwise, the BOX record is to be left untouched. This way,

TLSA (and SRV) records do not require a separate network request, and TLSA records become

inseparable from the corresponding address records.

7.3.4. Zone Delegation Records 

When the resolver encounters a record of a supported zone delegation record type (such as PKEY

or EDKEY) and the remainder of the name is not empty, resolution continues recursively with the

remainder of the name in the GNS zone specified in the delegation record.

Whenever a resolver encounters a new GNS zone, it  check against the local revocation list

(see Section 4.2) to see whether the respective zone key has been revoked. If the zone key was

revoked, the resolution  fail with an empty result set.

Implementations  allow multiple different zone delegations under a single label

(except if some are shadow records). Implementations  support any subset of ztypes.

Implementations  process zone delegation records stored under the apex label ("@"). If

a zone delegation record is encountered under the apex label, resolution fails and an error 

be returned. The implementation  choose not to return the reason for the failure, merely

impacting troubleshooting information for the user.

If the remainder of the name to resolve is empty and a record set was received containing only a

single delegation record, the recursion is continued with the record value as authoritative zone

and the apex label "@" as remaining name. Except in the case where the desired record type as

specified by the application is equal to the ztype, in which case the delegation record is returned.

MUST

MUST

MUST NOT

MAY

MUST NOT

MUST

MAY

7.3.5. NICK 

NICK records are only relevant to the recursive resolver if the record set in question is the final

result, which is to be returned to the application. The encountered NICK records can be either

supplemental (see Section 5) or non-supplemental. If the NICK record is supplemental, the

resolver only returns the record set if one of the non-supplemental records matches the queried

record type. It is possible that one record set contains both supplemental and non-supplemental

NICK records.

The differentiation between a supplemental and non-supplemental NICK record allows the

application to match the record to the authoritative zone. Consider the following example:

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 38



In this example, the returned NICK record is non-supplemental. For the application, this means

that the NICK belongs to the zone "alice.example.gns.alt" and is published under the apex label

along with an A record. The NICK record is interpreted as follows: the zone defined by

"alice.example.gns.alt" wants to be referred to as "eve". In contrast, consider the following:

In this case, the NICK record is marked as supplemental. This means that the NICK record

belongs to the zone "example.gns.alt" and is published under the label "alice" along with a AAAA

record. Here, the NICK record should be interpreted as follows: the zone defined by

"example.gns.alt" wants to be referred to as "john". This distinction is likely useful for other

records published as supplemental.

Query: alice.example.gns.alt (type=A)
Result:
A: 192.0.2.1
NICK: eve (non-supplemental)

Query: alice.example.gns.alt (type=AAAA)
Result:
AAAA: 2001:db8::1
NICK: john (supplemental)

8. Internationalization and Character Encoding 

All names in GNS are encoded in UTF-8 . Labels  be canonicalized using

Normalization Form C (NFC) . This does not include any DNS names found in

DNS records, such as CNAME record data, which is internationalized through the IDNA

specifications; see .

[RFC3629] MUST

[Unicode-UAX15]

[RFC5890]

9. Security and Privacy Considerations 

9.1. Availability 

In order to ensure availability of records beyond their absolute expiration times,

implementations  allow relative expiration time values of records to be locally defined.

Records can then be published recurringly with updated absolute expiration times by the

implementation.

Implementations  allow users to manage private records in their zones that are not

published in storage. Private records are considered just like regular records when resolving

labels in local zones, but their data is completely unavailable to non-local users.

MAY

MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 39



9.2. Agility 

The security of cryptographic systems depends on both the strength of the cryptographic

algorithms chosen and the strength of the keys used with those algorithms. This security also

depends on the engineering of the protocol used by the system to ensure that there are no non-

cryptographic ways to bypass the security of the overall system. This is why developers of

applications managing GNS zones  select a default ztype considered secure at the time of

releasing the software. For applications targeting end users that are not expected to understand

cryptography, the application developer  leave the ztype selection of new zones to end

users.

This document concerns itself with the selection of cryptographic algorithms used in GNS. The

algorithms identified in this document are not known to be broken (in the cryptographic sense)

at the current time, and cryptographic research so far leads us to believe that they are likely to

remain secure into the foreseeable future. However, this is not necessarily forever, and it is

expected that new revisions of this document will be issued from time to time to reflect the

current best practices in this area.

In terms of crypto-agility, whenever the need for an updated cryptographic scheme arises to, for

example, replace ECDSA over Ed25519 for PKEY records, it can simply be introduced through a

new record type. Zone administrators can then replace the delegation record type for future

records. The old record type remains, and zones can iteratively migrate to the updated zone keys.

To ensure that implementations correctly generate an error message when encountering a ztype

that they do not support, current and future delegation records must always have the CRITICAL

flag set.

SHOULD

MUST NOT

9.3. Cryptography 

The following considerations provide background on the design choices of the ztypes specified in

this document. When specifying new ztypes as per Section 4, the same considerations apply.

GNS PKEY zone keys use ECDSA over Ed25519. This is an unconventional choice, as ECDSA is

usually used with other curves. However, standardized ECDSA curves are problematic for a

range of reasons described in the Curve25519 and EdDSA papers . Using EdDSA directly

is also not possible, as a hash function is used on the private key which destroys the linearity that

the key blinding in GNS depends upon. We are not aware of anyone suggesting that using

Ed25519 instead of another common curve of similar size would lower the security of ECDSA.

GNS uses 256-bit curves; that way, the encoded (public) keys fit into a single DNS label, which is

good for usability.

In order to ensure ciphertext indistinguishability, care must be taken with respect to the IV in the

counter block. In our design, the IV always includes the expiration time of the record block.

When applications store records with relative expiration times, monotonicity is implicitly

ensured because each time a block is published in storage, its IV is unique, as the expiration time

is calculated dynamically and increases monotonically with the system time. Still, an

implementation  ensure that when relative expiration times are decreased, the expiration

[ed25519]

MUST

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 40



time of the next record block  be after the last published block. For records where an

absolute expiration time is used, the implementation  ensure that the expiration time is

always increased when the record data changes. For example, the expiration time on the wire

could be increased by a single microsecond even if the user did not request a change. In the case

of deletion of all resource records under a label, the implementation  keep track of the last

absolute expiration time of the last published resource block. Implementations  define and

use a special record type as a tombstone that preserves the last absolute expiration time but then

 take care to not publish a block with such a tombstone record. When new records are

added under this label later, the implementation  ensure that the expiration times are after

the last published block. Finally, in order to ensure monotonically increasing expiration times,

the implementation  keep a local record of the last time obtained from the system clock, so

as to construct a monotonic clock if the system clock jumps backwards.

MUST

MUST

MUST

MAY

MUST

MUST

MUST

9.4. Abuse Mitigation 

GNS names are UTF-8 strings. Consequently, GNS faces issues with respect to name spoofing

similar to those for DNS with respect to internationalized domain names. In DNS, attackers can

register similar-sounding or similar-looking names (see above) in order to execute phishing

attacks. GNS zone administrators must take into account this attack vector and incorporate rules

in order to mitigate it.

Further, DNS can be used to combat illegal content on the Internet by having the respective

domains seized by authorities. However, the same mechanisms can also be abused in order to

impose state censorship. Avoiding that possibility is one of the motivations behind GNS. In GNS,

TLDs are not enumerable. By design, the start zone of the resolver is defined locally, and hence

such a seizure is difficult and ineffective in GNS.

9.5. Zone Management 

In GNS, zone administrators need to manage and protect their zone keys. Once a private zone key

is lost, it cannot be recovered, and the zone revocation message cannot be computed anymore.

Revocation messages can be precalculated if revocation is required in cases where a private zone

key is lost. Zone administrators, and for GNS this includes end users, are required to responsibly

and diligently protect their cryptographic keys. GNS supports signing records in advance

("offline") in order to support processes (such as air gaps) that aim to protect private keys.

Similarly, users are required to manage their local start zone configuration. In order to ensure

the integrity and availability of names, users must ensure that their local start zone information

is not compromised or outdated. It can be expected that the processing of zone revocations and

an initial start zone is provided with a GNS implementation ("drop shipping"). Shipping an initial

start zone configuration effectively establishes a root zone. Extension and customization of the

zone are at the full discretion of the user.

While implementations following this specification will be interoperable, if two implementations

connect to different remote storage entities, they are mutually unreachable. This can lead to a

state where a record exists in the global namespace for a particular name, but the

implementation is not communicating with the remote storage entity that contains the respective

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 41



block and is hence unable to resolve it. This situation is similar to a split-horizon DNS

configuration. Which remote storage entities are implemented usually depends on the

application it is built for. The remote storage entity used will most likely depend on the specific

application context using GNS resolution. For example, one application is the resolution of

hidden services within the Tor network, which would suggest using Tor routers for remote

storage. Implementations of "aggregated" remote storage entities are conceivable but are

expected to be the exception.

9.6. DHTs as Remote Storage 

This document does not specify the properties of the underlying remote storage, which is

required by any GNS implementation. It is important to note that the properties of the

underlying remote storage are directly inherited by the GNS implementation. This includes both

security and other non-functional properties such as scalability and performance. Implementers

should take great care when selecting or implementing a DHT for use as remote storage in a GNS

implementation. DHTs with reasonable security and performance properties exist . It

should also be taken into consideration that GNS implementations that build upon different DHT

overlays are unlikely to be interoperable with each other.

[R5N]

9.7. Revocations 

Zone administrators are advised to pregenerate zone revocations and to securely store the

revocation information if the zone key is lost, compromised, or replaced in the future.

Precalculated revocations can cease to be valid due to expirations or protocol changes such as

epoch adjustments. Consequently, implementers and users must take precautions in order to

manage revocations accordingly.

Revocation payloads do not include a "new" key for key replacement. Inclusion of such a key

would have two major disadvantages:

If a revocation is published after a private key was compromised, allowing key replacement

would be dangerous: if an adversary took over the private key, the adversary could then

broadcast a revocation with a key replacement. For the replacement, the compromised

owner would have no chance to issue a revocation. Thus, allowing a revocation message to

replace a private key makes dealing with key compromise situations worse. 

Sometimes, key revocations are used with the objective of changing cryptosystems.

Migration to another cryptosystem by replacing keys via a revocation message would only be

secure as long as both cryptosystems are still secure against forgery. Such a planned, non-

emergency migration to another cryptosystem should be done by running zones for both

cipher systems in parallel for a while. The migration would conclude by revoking the legacy

zone key only when it is deemed no longer secure and, hopefully, after most users have

migrated to the replacement. 

1. 

2. 

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 42



9.8. Zone Privacy 

GNS does not support authenticated denial of existence of names within a zone. Record data is

published in encrypted form using keys derived from the zone key and record label. Zone

administrators should carefully consider whether (1) a label and zone key are public or (2) one

or both of these keys should be used as a shared secret to restrict access to the corresponding

record data. Unlike public zone keys, low-entropy labels can be guessed by an attacker. If an

attacker knows the public zone key, the use of well-known or guessable labels effectively

threatens the disclosure of the corresponding records.

It should be noted that the guessing attack on labels only applies if the zone key is somehow

disclosed to the adversary. GNS itself does not disclose it during a lookup or when resource

records are published (as only the blinded zone keys are used on the network). However, zone

keys do become public during revocation.

It is thus  to use a label with sufficient entropy to prevent guessing attacks if any

data in a resource record set is sensitive.

RECOMMENDED

9.9. Zone Governance 

While DNS is distributed, in practice it relies on centralized, trusted registrars to provide globally

unique names. As awareness of the central role DNS plays on the Internet increases, various

institutions are using their power (including legal means) to engage in attacks on the DNS, thus

threatening the global availability and integrity of information on the Internet. While a wider

discussion of this issue is out of scope for this document, analyses and investigations can be

found in recent academic research works, including .

GNS is designed to provide a secure, privacy-enhancing alternative to the DNS name resolution

protocol, especially when censorship or manipulation is encountered. In particular, it directly

addresses concerns in DNS with respect to query privacy. However, depending on the

governance of the root zone, any deployment will likely suffer from the issue of a single

hierarchy with a centrally controlled root and the related issue of distribution and management

of root servers in DNS, as raised in Sections 3.12 and 3.10 of , respectively. In DNS,

those issues directly result from the centralized root zone governance at the Internet Corporation

for Assigned Names and Numbers (ICANN), which allows it to provide globally unique names.

In GNS, start zones give users local authority over their preferred root zone governance. It

enables users to replace or enhance a trusted root zone configuration provided by a third party

(e.g., the implementer or a multi-stakeholder governance body like ICANN) with secure

delegation of authority using local petnames while operating under a very strong adversary

model. In combination with zTLDs, this provides users of GNS with a global, secure, and

memorable mapping without a trusted authority.

Any GNS implementation  provide a default governance model in the form of an initial start

zone mapping.

[SecureNS]

[RFC8324]

MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 43

https://www.rfc-editor.org/rfc/rfc8324#section-3.12
https://www.rfc-editor.org/rfc/rfc8324#section-3.10


9.10. Namespace Ambiguity 

Technically, the GNS protocol can be used to resolve names in the namespace of the global DNS.

However, this would require the respective governance bodies and stakeholders (e.g., the IETF

and ICANN) to standardize the use of GNS for this particular use case.

However, this capability implies that GNS names may be indistinguishable from DNS names in

their respective common display format  or other special-use domain names 

if a local start zone configuration maps suffixes from the global DNS to GNS zones. For

applications, which name system should be used in order to resolve a given name will then be

ambiguous. This poses a risk when trying to resolve a name through DNS when it is actually a

GNS name, as discussed in . In such a case, the GNS name is likely to be leaked as part

of the DNS resolution.

In order to prevent disclosure of queried GNS names, it is  that GNS-aware

applications try to resolve a given name in GNS before any other method, taking into account

potential suffix-to-zone mappings and zTLDs. Suffix-to-zone mappings are expected to be

configured by the user or local administrator, and as such the resolution in GNS is in line with

user expectations even if the name could also be resolved through DNS. If no suffix-to-zone

mapping for the name exists and no zTLD is found, resolution  continue with other methods

such as DNS. If a suffix-to-zone mapping for the name exists or the name ends with a zTLD, it 

 be resolved using GNS, and resolution  continue by any other means

independent of the GNS resolution result.

Mechanisms such as the Name Service Switch (NSS) of UNIX-like operating systems are an

example of how such a resolution process can be implemented and used. The NSS allows system

administrators to configure hostname resolution precedence and is integrated with the system

resolver implementation.

For use cases where GNS names may be confused with names of other name resolution

mechanisms (in particular, DNS), the ".gns.alt" domain  be used. For use cases like

implementing sinkholes to block malware sites or serving DNS domains via GNS to bypass

censorship, GNS  be deliberately used in ways that interfere with resolution of another name

system.

[RFC8499] [RFC6761]

[RFC8244]

RECOMMENDED

MAY

MUST MUST NOT

SHOULD

MAY

10. GANA Considerations 

GANA  has assigned signature purposes in its "GNUnet Signature Purposes" registry as

listed in Table 1.

[GANA]

Purpose Name References Comment

3 GNS_REVOCATION RFC 0000 GNS zone key revocation

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 44



Purpose Name References Comment

15 GNS_RECORD_SIGN RFC 0000 GNS record set signature

Table 1: Requested Changes in the GANA GNUnet Signature Purposes Registry 

Name:

Number:

Comment:

Contact:

References:

10.1. GNS Record Types Registry 

GANA  manages the "GNS Record Types" registry. Each entry has the following format:

The name of the record type (case-insensitive ASCII string, restricted to alphanumeric

characters). For zone delegation records, the assigned number represents the ztype value of

the zone. 

A 32-bit number above 65535. 

Optionally, brief English text describing the purpose of the record type (in UTF-8). 

Optionally, the contact information for a person to contact for further information. 

Optionally, references (such as an RFC) describing the record type. 

The registration policy for this registry is "First Come First Served". This policy is modeled on that

described in  and describes the actions taken by GANA:

Adding new entries is possible after review by any authorized GANA contributor, using a first-

come-first-served policy for unique name allocation. Reviewers are responsible for ensuring that

the chosen "Name" is appropriate for the record type. The registry will define a unique number

for the entry.

Authorized GANA contributors for review of new entries are reachable at 

.

Any request  contain a unique name and a point of contact. The contact information  be

added to the registry, with the consent of the requester. The request  optionally also contain

relevant references as well as a descriptive comment, as defined above.

GANA has assigned numbers for the record types defined in this specification in the "GNS Record

Types" registry as listed in Table 2.

[GANA]

[RFC8126]

mailto:gns-

registry@gnunet.org

MUST MAY

MAY

Number Name Contact References Comment

65536 PKEY (*) RFC 0000 GNS zone delegation (PKEY)

65537 NICK (*) RFC 0000 GNS zone nickname

65538 LEHO (*) RFC 0000 GNS legacy hostname

(*):  mailto:gns-registry@gnunet.org

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 45

mailto:gns-registry@gnunet.org
mailto:gns-registry@gnunet.org
mailto:gns-registry@gnunet.org


Number Name Contact References Comment

65540 GNS2DNS (*) RFC 0000 Delegation to DNS

65541 BOX (*) RFC 0000 Boxed records

65551 REDIRECT (*) RFC 0000 Redirection record

65556 EDKEY (*) RFC 0000 GNS zone delegation (EDKEY)

(*):  

Table 2: The GANA GNS Record Types Registry 

mailto:gns-registry@gnunet.org

Label:

Comment:

Contact:

References:

10.2. .alt Subdomains Registry 

GANA  manages the ".alt Subdomains" registry. Each entry has the following format:

The label of the subdomain (in DNS "letters, digits, hyphen" (LDH) format as defined in 

). 

Optionally, brief English text describing the purpose of the subdomain (in UTF-8). 

Optionally, the contact information for a person to contact for further information. 

Optionally, references (such as an RFC) describing the record type. 

The registration policy for this registry is "First Come First Served". This policy is modeled on that

described in  and describes the actions taken by GANA:

Adding new entries is possible after review by any authorized GANA contributor, using a first-

come-first-served policy for unique subdomain allocation. Reviewers are responsible for

ensuring that the chosen "Subdomain" is appropriate for the purpose.

Authorized GANA contributors for review of new entries are reachable at 

.

Any request  contain a unique subdomain and a point of contact. The contact information 

 be added to the registry, with the consent of the requester. The request  optionally also

contain relevant references as well as a descriptive comment, as defined above.

GANA has assigned the subdomain defined in this specification in the ".alt Subdomains" registry

as listed in Table 3.

[GANA]

Section 2.3.1 of [RFC5890]

[RFC8126]

mailto:alt-

registry@gnunet.org

MUST

MAY MAY

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 46

mailto:gns-registry@gnunet.org
https://www.rfc-editor.org/rfc/rfc5890#section-2.3.1
mailto:alt-registry@gnunet.org
mailto:alt-registry@gnunet.org


[RFC1034]

[RFC1035]

[RFC2782]

11. IANA Considerations 

This document has no IANA actions.

12. Implementation and Deployment Status 

There are two implementations conforming to this specification, written in C and Go,

respectively. The C implementation as part of GNUnet  represents the original and

reference implementation. The Go implementation  demonstrates how two

implementations of GNS are interoperable if they are built on top of the same underlying DHT

storage.

Currently, the GNUnet peer-to-peer network  is an active deployment of GNS on top of

its DHT . The Go implementation  uses this deployment by building on top of the

GNUnet DHT services available on any GNUnet peer. It shows how GNS implementations can

attach to this existing deployment and participate in name resolution as well as zone publication.

The self-sovereign identity system re:claimID  is using GNS in order to selectively share

identity attributes and attestations with third parties.

The Ascension tool  facilitates the migration of DNS zones to GNS zones by translating

information retrieved from a DNS zone transfer into a GNS zone.

13. References 

13.1. Normative References 

, , , , 

, November 1987, . 

, , , 

, , November 1987, 

. 

, , and , 

, , , February 2000, 

. 

Subdomain Contact References Comment

gns (*) RFC 0000 The .alt subdomain for GNS

(*):  

Table 3: The GANA .alt Subdomains Registry 

mailto:alt-registry@gnunet.org

[GNUnetGNS]

[GoGNS]

[GNUnet]

[R5N] [GoGNS]

[reclaim]

[Ascension]

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI

10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13

RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/

info/rfc1035>

Gulbrandsen, A. Vixie, P. L. Esibov "A DNS RR for specifying the location of

services (DNS SRV)" RFC 2782 DOI 10.17487/RFC2782 <https://

www.rfc-editor.org/info/rfc2782>

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 47

mailto:alt-registry@gnunet.org
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2782
https://www.rfc-editor.org/info/rfc2782


[RFC2119]

[RFC3629]

[RFC3686]

[RFC3826]

[RFC5237]

[RFC5869]

[RFC5890]

[RFC5895]

[RFC6234]

[RFC6895]

[RFC6979]

[RFC7748]

, , , 

, , March 1997, 

. 

, , , , 

, November 2003, 

. 

, 

, , , 

January 2004, . 

, , and , 

, 

, , June 2004, 

. 

 and , , 

, , , February 2008, 

. 

 and , 

, , , May 2010, 

. 

, 

, , , 

August 2010, . 

 and , 

, , , 

September 2010, . 

 and , 

, , , May 2011, 

. 

, , , 

, , April 2013, 

. 

, 

, , 

, August 2013, . 

, , and , , ,

, January 2016, . 

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629

DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/

rfc3629>

Housley, R. "Using Advanced Encryption Standard (AES) Counter Mode With

IPsec Encapsulating Security Payload (ESP)" RFC 3686 DOI 10.17487/RFC3686

<https://www.rfc-editor.org/info/rfc3686>

Blumenthal, U. Maino, F. K. McCloghrie "The Advanced Encryption

Standard (AES) Cipher Algorithm in the SNMP User-based Security Model" RFC

3826 DOI 10.17487/RFC3826 <https://www.rfc-editor.org/info/

rfc3826>

Arkko, J. S. Bradner "IANA Allocation Guidelines for the Protocol Field"

BCP 37 RFC 5237 DOI 10.17487/RFC5237 <https://www.rfc-

editor.org/info/rfc5237>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation

Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-

editor.org/info/rfc5869>

Klensin, J. "Internationalized Domain Names for Applications (IDNA):

Definitions and Document Framework" RFC 5890 DOI 10.17487/RFC5890

<https://www.rfc-editor.org/info/rfc5890>

Resnick, P. P. Hoffman "Mapping Characters for Internationalized Domain

Names in Applications (IDNA) 2008" RFC 5895 DOI 10.17487/RFC5895

<https://www.rfc-editor.org/info/rfc5895>

Eastlake 3rd, D. T. Hansen "US Secure Hash Algorithms (SHA and SHA-

based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://

www.rfc-editor.org/info/rfc6234>

Eastlake 3rd, D. "Domain Name System (DNS) IANA Considerations" BCP 42

RFC 6895 DOI 10.17487/RFC6895 <https://www.rfc-editor.org/info/

rfc6895>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and

Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/

RFC6979 <https://www.rfc-editor.org/info/rfc6979>

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748

DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 48

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3686
https://www.rfc-editor.org/info/rfc3826
https://www.rfc-editor.org/info/rfc3826
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5237
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc5895
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7748


[RFC8032]

[RFC8126]

[RFC8174]

[RFC8499]

[RFC9106]

[GANA]

[MODES]

[CrockfordB32]

[XSalsa20]

[Unicode-UAX15]

[Unicode-UTS46]

[RFC1928]

[RFC4033]

 and , 

, , , January 2017, 

. 

, , and , 

, , , , June

2017, . 

, , 

, , , May 2017, 

. 

, , and , , , 

, , January 2019, 

. 

, , , and , 

, , 

, September 2021, . 

, , 2023, 

. 

, 

, , 

, December 2001, . 

, , March 2019, 

. 

, , 2011, 

. 

, , and , 

, , 

September 2009, . 

 and , 

, 

, September 2023, . 

13.2. Informative References 

, , , , , and , 

, , , March 1996, 

. 

, , , , and , 

, , , March 2005, 

. 

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm

(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-

editor.org/info/rfc8032>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA

Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Hoffman, P. Sullivan, A. K. Fujiwara "DNS Terminology" BCP 219 RFC

8499 DOI 10.17487/RFC8499 <https://www.rfc-editor.org/info/

rfc8499>

Biryukov, A. Dinu, D. Khovratovich, D. S. Josefsson "Argon2 Memory-Hard

Function for Password Hashing and Proof-of-Work Applications" RFC 9106 DOI

10.17487/RFC9106 <https://www.rfc-editor.org/info/rfc9106>

GNUnet e.V. "GNUnet Assigned Numbers Authority (GANA)" <https://

gana.gnunet.org/>

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Methods

and Techniques" NIST Special Publication 800-38A DOI 10.6028/NIST.SP.

800-38A <https://doi.org/10.6028/NIST.SP.800-38A>

Crockford, D. "Base 32" <https://www.crockford.com/

base32.html>

Bernstein, D. J. "Extending the Salsa20 nonce" <https://cr.yp.to/snuffle/

xsalsa-20110204.pdf>

Davis, M. Whistler, K. M. Dürst "Unicode Standard Annex #15: Unicode

Normalization Forms" Revision 31, The Unicode Consortium, Mountain View

<https://www.unicode.org/reports/tr15/tr15-31.html>

Davis, M. M. Suignard "Unicode Technical Standard #46: Unicode IDNA

Compatibility Processing" Revision 31, The Unicode Consortium, Mountain

View <https://www.unicode.org/reports/tr46>

Leech, M. Ganis, M. Lee, Y. Kuris, R. Koblas, D. L. Jones "SOCKS Protocol

Version 5" RFC 1928 DOI 10.17487/RFC1928 <https://www.rfc-

editor.org/info/rfc1928>

Arends, R. Austein, R. Larson, M. Massey, D. S. Rose "DNS Security

Introduction and Requirements" RFC 4033 DOI 10.17487/RFC4033

<https://www.rfc-editor.org/info/rfc4033>

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 49

https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc9106
https://gana.gnunet.org/
https://gana.gnunet.org/
https://doi.org/10.6028/NIST.SP.800-38A
https://www.crockford.com/base32.html
https://www.crockford.com/base32.html
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://cr.yp.to/snuffle/xsalsa-20110204.pdf
https://www.unicode.org/reports/tr15/tr15-31.html
https://www.unicode.org/reports/tr46
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://www.rfc-editor.org/info/rfc4033


[RFC6066]

[RFC7363]

[RFC8324]

[RFC8806]

[RFC6761]

[RFC8244]

[RFC9476]

[Tor224]

[SDSI]

[Kademlia]

[ed25519]

[GNS]

, 

, , , January 2011, 

. 

 and , 

, , , 

September 2014, . 

, 

, , 

, February 2018, . 

 and , , 

, , June 2020, 

. 

 and , , , 

, February 2013, . 

, , and , 

, , , October 2017, 

. 

 and , , , 

, September 2023, 

. 

, , and , 

, , November 2013, 

. 

 and , , 

April 1996, . 

 and , 

, , 2002, 

. 

, , , , and , 

, , 2011, 

. 

, , and , 

, 

, 

, October 2014, 

. 

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension

Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-

editor.org/info/rfc6066>

Maenpaa, J. G. Camarillo "Self-Tuning Distributed Hash Table (DHT) for

REsource LOcation And Discovery (RELOAD)" RFC 7363 DOI 10.17487/RFC7363

<https://www.rfc-editor.org/info/rfc7363>

Klensin, J. "DNS Privacy, Authorization, Special Uses, Encoding, Characters,

Matching, and Root Structure: Time for Another Look?" RFC 8324 DOI 10.17487/

RFC8324 <https://www.rfc-editor.org/info/rfc8324>

Kumari, W. P. Hoffman "Running a Root Server Local to a Resolver" RFC

8806 DOI 10.17487/RFC8806 <https://www.rfc-editor.org/info/

rfc8806>

Cheshire, S. M. Krochmal "Special-Use Domain Names" RFC 6761 DOI

10.17487/RFC6761 <https://www.rfc-editor.org/info/rfc6761>

Lemon, T. Droms, R. W. Kumari "Special-Use Domain Names Problem

Statement" RFC 8244 DOI 10.17487/RFC8244 <https://www.rfc-

editor.org/info/rfc8244>

Kumari, W. P. Hoffman "The .alt Special-Use Top-Level Domain" RFC 9476

DOI 10.17487/RFC9476 <https://www.rfc-editor.org/info/

rfc9476>

Goulet, D. Kadianakis, G. N. Mathewson "Next-Generation Hidden Services

in Tor" Appendix A.2 ("Tor's key derivation scheme") <https://

gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt#n2135>

Rivest, R. B. Lampson "SDSI - A Simple Distributed Security Infrastructure"

<http://people.csail.mit.edu/rivest/Sdsi10.ps>

Maymounkov, P. D. Mazières "Kademlia: A Peer-to-peer Information System

Based on the XOR Metric" DOI 10.1007/3-540-45748-8_5 <https://

css.csail.mit.edu/6.824/2014/papers/kademlia.pdf>

Bernstein, D. J. Duif, N. Lange, T. Schwabe, P. B-Y. Yang "High-speed high-

security signatures" DOI 10.1007/s13389-012-0027-1 <https://

ed25519.cr.yp.to/ed25519-20110926.pdf>

Wachs, M. Schanzenbach, M. C. Grothoff "A Censorship-Resistant, Privacy-

Enhancing and Fully Decentralized Name System" 13th International

Conference on Cryptology and Network Security (CANS) DOI

10.13140/2.1.4642.3044 <https://sci-hub.st/

10.1007/978-3-319-12280-9_9>

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 50

https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc7363
https://www.rfc-editor.org/info/rfc8324
https://www.rfc-editor.org/info/rfc8806
https://www.rfc-editor.org/info/rfc8806
https://www.rfc-editor.org/info/rfc6761
https://www.rfc-editor.org/info/rfc8244
https://www.rfc-editor.org/info/rfc8244
https://www.rfc-editor.org/info/rfc9476
https://www.rfc-editor.org/info/rfc9476
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt#n2135
https://gitweb.torproject.org/torspec.git/tree/proposals/224-rend-spec-ng.txt#n2135
http://people.csail.mit.edu/rivest/Sdsi10.ps
https://css.csail.mit.edu/6.824/2014/papers/kademlia.pdf
https://css.csail.mit.edu/6.824/2014/papers/kademlia.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://sci-hub.st/10.1007/978-3-319-12280-9_9
https://sci-hub.st/10.1007/978-3-319-12280-9_9


[R5N]

[SecureNS]

[GNUnetGNS]

[Ascension]

[GNUnet]

[reclaim]

[GoGNS]

[nsswitch]

 and , 

, 

, , September 2011, 

. 

, , , and , 

, 

, , August 2018, 

. 

, , 2023, 

. 

, , 2023, 

. 

, , 2023, . 

, 

, 2023, . 

, , , July 2023, 

. 

, , 

. 

Appendix A. Usage and Migration 

This section outlines a number of specific use cases that may help readers of this technical

specification better understand the protocol. The considerations below are not meant to be

normative for the GNS protocol in any way. Instead, they are provided in order to give context

and to provide some background on what the intended use of the protocol is by its designers.

Further, this section provides pointers to migration paths.

Evans, N. S. C. Grothoff "R5N: Randomized Recursive Routing for Restricted-

Route Networks" 5th International Conference on Network and System Security

(NSS) DOI 10.1109/ICNSS.2011.6060022 <https://sci-hub.st/

10.1109/ICNSS.2011.6060022>

Grothoff, C. Wachs, M. Ermert, M. J. Appelbaum "Toward secure name

resolution on the Internet" Computers and Security, Volume 77, Issue C, pp.

694-708 DOI 10.1016/j.cose.2018.01.018 <https://sci-hub.st/https://

doi.org/10.1016/j.cose.2018.01.018>

GNUnet e.V. "The GNUnet GNS Implementation" <https://git.gnunet.org/

gnunet.git/tree/src/gns>

GNUnet e.V. "The Ascension Implementation" <https://git.gnunet.org/

ascension.git>

GNUnet e.V. "The GNUnet Project" <https://gnunet.org>

GNUnet e.V. "re:claimID - Self-sovereign, Decentralised Identity Management

and Personal Data Sharing" <https://reclaim.gnunet.org>

Fix, B. "gnunet-go (Go GNS)" commit 5c815ba <https://github.com/

bfix/gnunet-go/tree/master/src/gnunet/service/gns>

GNU Project "System Databases and Name Service Switch (Section 29)" <https://

www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html>

A.1. Zone Dissemination 

In order to become a zone owner, it is sufficient to generate a zone key and a corresponding

secret key using a GNS implementation. At this point, the zone owner can manage GNS resource

records in a local zone database. The resource records can then be published by a GNS

implementation as defined in Section 6. For other users to resolve the resource records, the

respective zone information must be disseminated first. The zone owner may decide to make the

zone key and labels known to a selected set of users only or to make this information available to

the general public.

Sharing zone information directly with specific users not only allows an implementation to

potentially preserve zone and record privacy but also allows the zone owner and the user to

establish strong trust relationships. For example, a bank may send a customer letter with a QR

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 51

https://sci-hub.st/10.1109/ICNSS.2011.6060022
https://sci-hub.st/10.1109/ICNSS.2011.6060022
https://sci-hub.st/https://doi.org/10.1016/j.cose.2018.01.018
https://sci-hub.st/https://doi.org/10.1016/j.cose.2018.01.018
https://git.gnunet.org/gnunet.git/tree/src/gns
https://git.gnunet.org/gnunet.git/tree/src/gns
https://git.gnunet.org/ascension.git
https://git.gnunet.org/ascension.git
https://gnunet.org
https://reclaim.gnunet.org
https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns
https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html
https://www.gnu.org/software/libc/manual/html_node/Name-Service-Switch.html


A.2. Start Zone Configuration 

A user is expected to install a GNS implementation if it is not already provided through other

means such as the operating system or the browser. It is likely that the implementation ships

with a default start zone configuration. This means that the user is able to resolve GNS names

ending on a zTLD or ending on any suffix-to-name mapping that is part of the default start zone

configuration. At this point, the user may delete or otherwise modify the implementation's

default configuration:

Deletion of suffix-to-zone mappings may become necessary if the zone owner referenced by the

mapping has lost the trust of the user. For example, this could be due to lax registration policies

resulting in phishing activities. Modification and addition of new mappings are means to heal the

namespace perforation that would occur in the case of a deletion or to simply establish a strong

direct trust relationship. However, this requires the user's knowledge of the respective zone keys.

This information must be retrieved out of band, as illustrated in Appendix A.1: a bank may send

the user a letter with a QR code that contains the GNS zone of the bank. The user scans the QR

code and adds a new suffix-to-name mapping using a chosen local name for his bank. Other

examples include scanning zone information off the device of a friend, from a storefront, or from

an advertisement. The level of trust in the respective zone is contextual and likely varies from

user to user. Trust in a zone provided through a letter from a bank that may also include a credit

card is certainly different from a zone found on a random advertisement on the street. However,

this trust is immediately tangible to the user and can be reflected in the local naming as well.

Users that are also clients should facilitate the modification of the start zone configuration -- for

example, by providing a QR code reader or other import mechanisms. Implementations are

ideally implemented according to best practices and addressing applicable points from Section 9.

Formalizing such best practices is out of scope for this specification.

code that contains the GNS zone of the bank. This allows the user to scan the QR code and

establish a strong link to the zone of the bank and with it, for example, the IP address of the

online banking web site.

Most Internet services likely want to make their zones available to the general public in the most

efficient way possible. First, it is reasonable to assume that zones that are commanding high

levels of reputation and trust are likely included in the default suffix-to-zone mappings of

implementations. Hence, dissemination of a zone through delegation under such zones can be a

viable path in order to disseminate a zone publicly. For example, it is conceivable that

organizations such as ICANN or country-code TLD registrars also manage GNS zones and offer

registration or delegation services.

Following best practices, particularly those related to security and abuse mitigation, are methods

that allow zone owners and aspiring registrars to gain a good reputation and, eventually, trust.

This includes, of course, diligent protection of private zone key material. Formalizing such best

practices is out of scope for this specification and should be addressed in a separate document

that takes Section 9 of this document into account.

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 52



A.3. Globally Unique Names and the Web 

HTTP virtual hosting and TLS Server Name Indication (SNI) are common use cases on the Web.

HTTP clients supply a DNS name in the HTTP "Host"-header or as part of the TLS handshake,

respectively. This allows the HTTP server to serve the indicated virtual host with a matching TLS

certificate. The global uniqueness of DNS names is a prerequisite of those use cases.

Not all GNS names are globally unique. However, any resource record in GNS can be represented

as a concatenation of a GNS label and the zTLD of the zone. While not human readable, this

globally unique GNS name can be leveraged in order to facilitate the same use cases. Consider

the GNS name "www.example.gns" entered in a GNS-aware HTTP client. At first,

"www.example.gns" is resolved using GNS, yielding a record set. Then, the HTTP client

determines the virtual host as follows:

If there is a LEHO record (Section 5.3.1) containing "www.example.com" in the record set, then

the HTTP client uses this as the value of the "Host"-header field of the HTTP request:

If there is no LEHO record in the record set, then the HTTP client tries to find the zone of the

record and translates the GNS name into a globally unique zTLD representation before using it in

the "Host"-header field of the HTTP request:

In order to determine the canonical representation of the record with a zTLD, at most two

queries are required: first, it must be checked to see whether "www.example.gns.alt" itself points

to a zone delegation record; this would imply that the record set that was originally resolved is

published under the apex label. If it does, the unique GNS name is simply the zTLD

representation of the delegated zone:

If it does not, the unique GNS name is the concatenation of the label "www" and the zTLD

representation of the zone as given in the example above. In any case, this representation is

globally unique. As such, it can be configured by the HTTP server administrator as a virtual

hostname and respective certificates may be issued.

If the HTTP client is a browser, the use of a unique GNS name for virtual hosting or TLS SNI does

not necessarily have to be shown to the user. For example, the name in the URL bar may remain

as "www.example.gns.alt" even if the used unique name differs.

GET / HTTP/1.1
Host: www.example.com

GET / HTTP/1.1
Host: www.000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

GET / HTTP/1.1
Host: 000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 53



A.4. Migration Paths 

DNS resolution is built into a variety of existing software components -- most significantly,

operating systems and HTTP clients. This section illustrates possible migration paths for both in

order to enable legacy applications to resolve GNS names.

One way to efficiently facilitate the resolution of GNS names is via GNS-enabled DNS server

implementations. Local DNS queries are thereby either rerouted or explicitly configured to be

resolved by a "DNS-to-GNS" server that runs locally. This DNS server tries to interpret any

incoming query for a name as a GNS resolution request. If no start zone can be found for the

name and it does not end in a zTLD, the server tries to resolve the name in DNS. Otherwise, the

name is resolved in GNS. In the latter case, the resulting record set is converted to a DNS answer

packet and is returned accordingly. An implementation of a DNS-to-GNS server can be found in 

.

A similar approach is to use operating system extensions such as the NSS . It allows the

system administrator to configure plugins that are used for hostname resolution. A GNS nsswitch

plugin can be used in a fashion similar to that used for the DNS-to-GNS server. An

implementation of a glibc-compatible nsswitch plugin for GNS can be found in .

The methods above are usually also effective for HTTP client software. However, HTTP clients

are commonly used in combination with TLS. TLS certificate validation, and SNI in particular,

require additional logic in HTTP clients when GNS names are in play (Appendix A.3). In order to

transparently enable this functionality for migration purposes, a local GNS-aware SOCKS5 proxy 

 can be configured to resolve domain names. The SOCKS5 proxy, similar to the DNS-to-

GNS server, is capable of resolving both GNS and DNS names. In the event of a TLS connection

request with a GNS name, the SOCKS5 proxy can act as a man-in-the-middle, terminating the TLS

connection and establishing a secure connection against the requested host. In order to establish

a secure connection, the proxy may use LEHO and TLSA records stored in the record set under

the GNS name. The proxy must provide a locally trusted certificate for the GNS name to the HTTP

client; this usually requires the generation and configuration of a local trust anchor in the

browser. An implementation of this SOCKS5 proxy can be found in .

Appendix B. Example Flows 

B.1. AAAA Example Resolution 

[GNUnet]

[nsswitch]

[GNUnet]

[RFC1928]

[GNUnet]

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 54



Look up AAAA record for name: www.example.gnu.gns.alt. 

Determine start zone for www.example.gnu.gns.alt. 

Start zone: zk0 - Remainder: www.example. 

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0). 

Retrieve and decrypt RRBLOCK consisting of a single PKEY record containing zk1. 

Calculate q1=SHA512(ZKDF(zk1, "www")) and initiate GET(q1). 

Retrieve RRBLOCK consisting of a single AAAA record containing the IPv6 address

2001:db8::1. 

Return record set to application. 

B.2. REDIRECT Example Resolution 

Figure 24: Example Resolution of an IPv6 Address 

                           Local Host             |   Remote
                                                  |   Storage
                                                  |
                                                  |    +---------+
                                                  |   /         /|
                                                  |  +---------+ |
+-----------+ (1)      +----------+               |  |         | |
|           |          |          |      (4,6)    |  | Record  | |
|Application|----------| Resolver |---------------|->| Storage | |
|           |<---------|          |<--------------|--|         |/
+-----------+ (8)      +----------+      (5,7)    |  +---------+
                          A                       |
                          |                       |
                    (2,3) |                       |
                          |                       |
                          |                       |
                       +---------+                |
                      /   v     /|                |
                     +---------+ |                |
                     |         | |                |
                     |  Start  | |                |
                     |  Zones  | |                |
                     |         |/                 |
                     +---------+                  |

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 55



Look up AAAA record for name: www.example.tld.gns.alt. 

Determine start zone for www.example.tld.gns.alt. 

Start zone: zk0 - Remainder: www.example. 

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0). 

Retrieve and decrypt RRBLOCK consisting of a single PKEY record containing zk1. 

Calculate q1=SHA512(ZKDF(zk1, "www")) and initiate GET(q1). 

Retrieve and decrypt RRBLOCK consisting of a single REDIRECT record containing www2.+. 

Calculate q2=SHA512(ZKDF(zk1, "www2")) and initiate GET(q2). 

Retrieve and decrypt RRBLOCK consisting of a single AAAA record containing the IPv6

address 2001:db8::1. 

Return record set to application. 

B.3. GNS2DNS Example Resolution 

Figure 25: Example Resolution of an IPv6 Address with Redirect 

                           Local Host              |   Remote
                                                   |   Storage
                                                   |
                                                   |    +---------+
                                                   |   /         /|
                                                   |  +---------+ |
+-----------+ (1)      +----------+                |  |         | |
|           |          |          |      (4,6,8)   |  | Record  | |
|Application|----------| Resolver |----------------|->| Storage | |
|           |<---------|          |<---------------|--|         |/
+-----------+ (10)     +----------+      (5,7,9)   |  +---------+
                          A                        |
                          |                        |
                    (2,3) |                        |
                          |                        |
                          |                        |
                       +---------+                 |
                      /   v     /|                 |
                     +---------+ |                 |
                     |         | |                 |
                     |  Start  | |                 |
                     |  Zones  | |                 |
                     |         |/                  |
                     +---------+                   |

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 56



Look up AAAA record for name: www.example.gnu.gns.alt. 

Determine start zone for www.example.gnu.gns.alt. 

Start zone: zk0 - Remainder: www.example. 

Calculate q0=SHA512(ZKDF(zk0, "example")) and initiate GET(q0). 

Retrieve and decrypt RRBLOCK consisting of a single GNS2DNS record containing the name

"example.com" and the DNS server IPv4 address 192.0.2.1. 

Use system resolver to look up a AAAA record for the DNS name www.example.com. 

Retrieve a DNS reply consisting of a single AAAA record containing the IPv6 address

2001:db8::1. 

Return record set to application. 

Figure 26: Example Resolution of an IPv6 Address with DNS Handover 

                           Local Host                |   Remote
                                                     |   Storage
                                                     |
                                                     |    +---------+
                                                     |   /         /|
                                                     |  +---------+ |
+-----------+ (1)      +----------+                  |  |         | |
|           |          |          |      (4)         |  | Record  | |
|Application|----------| Resolver |------------------|->| Storage | |
|           |<---------|          |<-----------------|--|         |/
+-----------+ (8)      +----------+      (5)         |  +---------+
                          A    A                     |
                          |    |    (6,7)            |
                    (2,3) |    +----------+          |
                          |               |          |
                          |               v          |
                       +---------+    +------------+ |
                      /   v     /|    | System DNS | |
                     +---------+ |    | Resolver   | |
                     |         | |    +------------+ |
                     |  Start  | |                   |
                     |  Zones  | |                   |
                     |         |/                    |
                     +---------+                     |

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Appendix C. Base32GNS 

Encoding converts a byte array into a string of symbols. Decoding converts a string of symbols

into a byte array. Decoding fails if the input string has symbols outside the defined set.

Table 4 defines the encoding and decoding symbols for a given symbol value. Each symbol value

encodes 5 bits. It can be used to implement the encoding by reading it as follows: a symbol "A" or

"a" is decoded to a 5-bit value 10 when decoding. A 5-bit block with a value of 18 is encoded to the

character "J" when encoding. If the bit length of the byte string to encode is not a multiple of 5, it

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 57



is padded to the next multiple with zeroes. In order to further increase tolerance for failures in

character recognition, the letter "U"  be decoded to the same value as the letter "V" in

Base32GNS.

MUST

Symbol Value Decoding Symbol Encoding Symbol

0 0 O o 0

1 1 I i L l 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8 8

9 9 9

10 A a A

11 B b B

12 C c C

13 D d D

14 E e E

15 F f F

16 G g G

17 H h H

18 J j J

19 K k K

20 M m M

21 N n N

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 58



Appendix D. Test Vectors 

The following test vectors can be used by implementations to test for conformance with this

specification. Unless indicated otherwise, the test vectors are provided as hexadecimal byte

arrays.

D.1. Base32GNS Encoding/Decoding 

The following are test vectors for the Base32GNS encoding used for zTLDs. The input strings are

encoded without the zero terminator.

Symbol Value Decoding Symbol Encoding Symbol

22 P p P

23 Q q Q

24 R r R

25 S s S

26 T t T

27 V v U u V

28 W w W

29 X x X

30 Y y Y

31 Z z Z

Table 4: The Base32GNS Alphabet, Including the Additional

Encoding Symbol "U" 

Base32GNS-Encode:
  Input string: "Hello World"
  Output string: "91JPRV3F41BPYWKCCG"

  Input bytes: 474e55204e616d652053797374656d
  Output string: "8X75A82EC5PPA82KF5SQ8SBD"

Base32GNS-Decode:
  Input string: "91JPRV3F41BPYWKCCG"
  Output string: "Hello World"

  Input string: "91JPRU3F41BPYWKCCG"
  Output string: "Hello World"

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 59



D.2. Record Sets 

The test vectors include record sets with a variety of record types and flags for both PKEY and

EDKEY zones. This includes labels with UTF-8 characters to demonstrate internationalized labels.

(1) PKEY zone with ASCII label and one delegation record

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 60



Zone private key (d, big-endian):
  50 d7 b6 52 a4 ef ea df
  f3 73 96 90 97 85 e5 95
  21 71 a0 21 78 c8 e7 d4
  50 fa 90 79 25 fa fd 98

Zone identifier (ztype|zkey):
  00 01 00 00 67 7c 47 7d
  2d 93 09 7c 85 b1 95 c6
  f9 6d 84 ff 61 f5 98 2c
  2c 4f e0 2d 5a 11 fe df
  b0 c2 90 1f

zTLD:
000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

Label:
  74 65 73 74 64 65 6c 65
  67 61 74 69 6f 6e

Number of records (integer): 1

Record #0 := (
  EXPIRATION: 8143584694000000 us
  00 1c ee 8c 10 e2 59 80

  DATA_SIZE:
  00 20

  TYPE:
  00 01 00 00

  FLAGS:   00 01

  DATA:
  21 e3 b3 0f f9 3b c6 d3
  5a c8 c6 e0 e1 3a fd ff
  79 4c b7 b4 4b bb c7 48
  d2 59 d0 a0 28 4d be 84

)

RDATA:
  00 1c ee 8c 10 e2 59 80
  00 20 00 01 00 01 00 00
  21 e3 b3 0f f9 3b c6 d3
  5a c8 c6 e0 e1 3a fd ff
  79 4c b7 b4 4b bb c7 48
  d2 59 d0 a0 28 4d be 84

Encryption NONCE|EXPIRATION|BLOCK COUNTER:
  e9 0a 00 61 00 1c ee 8c
  10 e2 59 80 00 00 00 01

Encryption key (K):
  86 4e 71 38 ea e7 fd 91
  a3 01 36 89 9c 13 2b 23

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 61



(2) PKEY zone with UTF-8 label and three records

  ac eb db 2c ef 43 cb 19
  f6 bf 55 b6 7d b9 b3 b3

Storage key (q):
  4a dc 67 c5 ec ee 9f 76
  98 6a bd 71 c2 22 4a 3d
  ce 2e 91 70 26 c9 a0 9d
  fd 44 ce f3 d2 0f 55 a2
  73 32 72 5a 6c 8a fb bb
  b0 f7 ec 9a f1 cc 42 64
  12 99 40 6b 04 fd 9b 5b
  57 91 f8 6c 4b 08 d5 f4

ZKDF(zkey):
  18 2b b6 36 ed a7 9f 79
  57 11 bc 27 08 ad bb 24
  2a 60 44 6a d3 c3 08 03
  12 1d 03 d3 48 b7 ce b6

Derived private key (d', big-endian):
  0a 4c 5e 0f 00 63 df ce
  db c8 c7 f2 b2 2c 03 0c
  86 28 b2 c2 cb ac 9f a7
  29 aa e6 1f 89 db 3e 9c

BDATA:
  0c 1e da 5c c0 94 a1 c7
  a8 88 64 9d 25 fa ee bd
  60 da e6 07 3d 57 d8 ae
  8d 45 5f 4f 13 92 c0 74
  e2 6a c6 69 bd ee c2 34
  62 b9 62 95 2c c6 e9 eb

RRBLOCK:
  00 00 00 a0 00 01 00 00
  18 2b b6 36 ed a7 9f 79
  57 11 bc 27 08 ad bb 24
  2a 60 44 6a d3 c3 08 03
  12 1d 03 d3 48 b7 ce b6
  0a d1 0b c1 3b 40 3b 5b
  25 61 26 b2 14 5a 6f 60
  c5 14 f9 51 ff a7 66 f7
  a3 fd 4b ac 4a 4e 19 90
  05 5c b8 7e 8d 1b fd 19
  aa 09 a4 29 f7 29 e9 f5
  c6 ee c2 47 0a ce e2 22
  07 59 e9 e3 6c 88 6f 35
  00 1c ee 8c 10 e2 59 80
  0c 1e da 5c c0 94 a1 c7
  a8 88 64 9d 25 fa ee bd
  60 da e6 07 3d 57 d8 ae
  8d 45 5f 4f 13 92 c0 74
  e2 6a c6 69 bd ee c2 34
  62 b9 62 95 2c c6 e9 eb

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 62



Zone private key (d, big-endian):
  50 d7 b6 52 a4 ef ea df
  f3 73 96 90 97 85 e5 95
  21 71 a0 21 78 c8 e7 d4
  50 fa 90 79 25 fa fd 98

Zone identifier (ztype|zkey):
  00 01 00 00 67 7c 47 7d
  2d 93 09 7c 85 b1 95 c6
  f9 6d 84 ff 61 f5 98 2c
  2c 4f e0 2d 5a 11 fe df
  b0 c2 90 1f

zTLD:
000G0037FH3QTBCK15Y8BCCNRVWPV17ZC7TSGB1C9ZG2TPGHZVFV1GMG3W

Label:
  e5 a4 a9 e4 b8 8b e7 84
  a1 e6 95 b5

Number of records (integer): 3

Record #0 := (
  EXPIRATION: 8143584694000000 us
  00 1c ee 8c 10 e2 59 80

  DATA_SIZE:
  00 10

  TYPE:
  00 00 00 1c

  FLAGS:   00 00

  DATA:
  00 00 00 00 00 00 00 00
  00 00 00 00 de ad be ef

)

Record #1 := (
  EXPIRATION: 17999736901000000 us
  00 3f f2 aa 54 08 db 40

  DATA_SIZE:
  00 06

  TYPE:
  00 01 00 01

  FLAGS:   00 00

  DATA:
  e6 84 9b e7 a7 b0

)

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 63



Record #2 := (
  EXPIRATION: 11464693629000000 us
  00 28 bb 13 ff 37 19 40

  DATA_SIZE:
  00 0b

  TYPE:
  00 00 00 10

  FLAGS:   00 04

  DATA:
  48 65 6c 6c 6f 20 57 6f
  72 6c 64

)

RDATA:
  00 1c ee 8c 10 e2 59 80
  00 10 00 00 00 00 00 1c
  00 00 00 00 00 00 00 00
  00 00 00 00 de ad be ef
  00 3f f2 aa 54 08 db 40
  00 06 00 00 00 01 00 01
  e6 84 9b e7 a7 b0 00 28
  bb 13 ff 37 19 40 00 0b
  00 04 00 00 00 10 48 65
  6c 6c 6f 20 57 6f 72 6c
  64 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00

Encryption NONCE|EXPIRATION|BLOCK COUNTER:
  ee 96 33 c1 00 1c ee 8c
  10 e2 59 80 00 00 00 01

Encryption key (K):
  fb 3a b5 de 23 bd da e1
  99 7a af 7b 92 c2 d2 71
  51 40 8b 77 af 7a 41 ac
  79 05 7c 4d f5 38 3d 01

Storage key (q):
  af f0 ad 6a 44 09 73 68
  42 9a c4 76 df a1 f3 4b
  ee 4c 36 e7 47 6d 07 aa
  64 63 ff 20 91 5b 10 05
  c0 99 1d ef 91 fc 3e 10
  90 9f 87 02 c0 be 40 43
  67 78 c7 11 f2 ca 47 d5
  5c f0 b5 4d 23 5d a9 77

ZKDF(zkey):
  a5 12 96 df 75 7e e2 75

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 64



  ca 11 8d 4f 07 fa 7a ae
  55 08 bc f5 12 aa 41 12
  14 29 d4 a0 de 9d 05 7e

Derived private key (d', big-endian):
  0a be 56 d6 80 68 ab 40
  e1 44 79 0c de 9a cf 4d
  78 7f 2d 3c 63 b8 53 05
  74 6e 68 03 32 15 f2 ab

BDATA:
  d8 c2 8d 2f d6 96 7d 1a
  b7 22 53 f2 10 98 b8 14
  a4 10 be 1f 59 98 de 03
  f5 8f 7e 7c db 7f 08 a6
  16 51 be 4d 0b 6f 8a 61
  df 15 30 44 0b d7 47 dc
  f0 d7 10 4f 6b 8d 24 c2
  ac 9b c1 3d 9c 6f e8 29
  05 25 d2 a6 d0 f8 84 42
  67 a1 57 0e 8e 29 4d c9
  3a 31 9f cf c0 3e a2 70
  17 d6 fd a3 47 b4 a7 94
  97 d7 f6 b1 42 2d 4e dd
  82 1c 19 93 4e 96 c1 aa
  87 76 57 25 d4 94 c7 64
  b1 55 dc 6d 13 26 91 74

RRBLOCK:
  00 00 00 f0 00 01 00 00
  a5 12 96 df 75 7e e2 75
  ca 11 8d 4f 07 fa 7a ae
  55 08 bc f5 12 aa 41 12
  14 29 d4 a0 de 9d 05 7e
  08 5b d6 5f d4 85 10 51
  ba ce 2a 45 2a fc 8a 7e
  4f 6b 2c 1f 74 f0 20 35
  d9 64 1a cd ba a4 66 e0
  00 ce d6 f2 d2 3b 63 1c
  8e 8a 0b 38 e2 ba e7 9a
  22 ca d8 1d 4c 50 d2 25
  35 8e bc 17 ac 0f 89 9e
  00 1c ee 8c 10 e2 59 80
  d8 c2 8d 2f d6 96 7d 1a
  b7 22 53 f2 10 98 b8 14
  a4 10 be 1f 59 98 de 03
  f5 8f 7e 7c db 7f 08 a6
  16 51 be 4d 0b 6f 8a 61
  df 15 30 44 0b d7 47 dc
  f0 d7 10 4f 6b 8d 24 c2
  ac 9b c1 3d 9c 6f e8 29
  05 25 d2 a6 d0 f8 84 42
  67 a1 57 0e 8e 29 4d c9
  3a 31 9f cf c0 3e a2 70
  17 d6 fd a3 47 b4 a7 94
  97 d7 f6 b1 42 2d 4e dd
  82 1c 19 93 4e 96 c1 aa

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 65



(3) EDKEY zone with ASCII label and delegation record

  87 76 57 25 d4 94 c7 64
  b1 55 dc 6d 13 26 91 74

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 66



Zone private key (d):
  5a f7 02 0e e1 91 60 32
  88 32 35 2b bc 6a 68 a8
  d7 1a 7c be 1b 92 99 69
  a7 c6 6d 41 5a 0d 8f 65

Zone identifier (ztype|zkey):
  00 01 00 14 3c f4 b9 24
  03 20 22 f0 dc 50 58 14
  53 b8 5d 93 b0 47 b6 3d
  44 6c 58 45 cb 48 44 5d
  db 96 68 8f

zTLD:
000G051WYJWJ80S04BRDRM2R2H9VGQCKP13VCFA4DHC4BJT88HEXQ5K8HW

Label:
  74 65 73 74 64 65 6c 65
  67 61 74 69 6f 6e

Number of records (integer): 1

Record #0 := (
  EXPIRATION: 8143584694000000 us
  00 1c ee 8c 10 e2 59 80

  DATA_SIZE:
  00 20

  TYPE:
  00 01 00 00

  FLAGS:   00 01

  DATA:
  21 e3 b3 0f f9 3b c6 d3
  5a c8 c6 e0 e1 3a fd ff
  79 4c b7 b4 4b bb c7 48
  d2 59 d0 a0 28 4d be 84

)

RDATA:
  00 1c ee 8c 10 e2 59 80
  00 20 00 01 00 01 00 00
  21 e3 b3 0f f9 3b c6 d3
  5a c8 c6 e0 e1 3a fd ff
  79 4c b7 b4 4b bb c7 48
  d2 59 d0 a0 28 4d be 84

Encryption NONCE|EXPIRATION:
  98 13 2e a8 68 59 d3 5c
  88 bf d3 17 fa 99 1b cb
  00 1c ee 8c 10 e2 59 80

Encryption key (K):
  85 c4 29 a9 56 7a a6 33

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 67



  41 1a 96 91 e9 09 4c 45
  28 16 72 be 58 60 34 aa
  e4 a2 a2 cc 71 61 59 e2

Storage key (q):
  ab aa ba c0 e1 24 94 59
  75 98 83 95 aa c0 24 1e
  55 59 c4 1c 40 74 e2 55
  7b 9f e6 d1 54 b6 14 fb
  cd d4 7f c7 f5 1d 78 6d
  c2 e0 b1 ec e7 60 37 c0
  a1 57 8c 38 4e c6 1d 44
  56 36 a9 4e 88 03 29 e9

ZKDF(zkey):
  9b f2 33 19 8c 6d 53 bb
  db ac 49 5c ab d9 10 49
  a6 84 af 3f 40 51 ba ca
  b0 dc f2 1c 8c f2 7a 1a

nonce := SHA-256 (dh[32..63] || h):
  14 f2 c0 6b ed c3 aa 2d
  f0 71 13 9c 50 39 34 f3
  4b fa 63 11 a8 52 f2 11
  f7 3a df 2e 07 61 ec 35

Derived private key (d', big-endian):
  3b 1b 29 d4 23 0b 10 a8
  ec 4d a3 c8 6e db 88 ea
  cd 54 08 5c 1d db 63 f7
  a9 d7 3f 7c cb 2f c3 98

BDATA:
  57 7c c6 c9 5a 14 e7 04
  09 f2 0b 01 67 e6 36 d0
  10 80 7c 4f 00 37 2d 69
  8c 82 6b d9 2b c2 2b d6
  bb 45 e5 27 7c 01 88 1d
  6a 43 60 68 e4 dd f1 c6
  b7 d1 41 6f af a6 69 7c
  25 ed d9 ea e9 91 67 c3

RRBLOCK:
  00 00 00 b0 00 01 00 14
  9b f2 33 19 8c 6d 53 bb
  db ac 49 5c ab d9 10 49
  a6 84 af 3f 40 51 ba ca
  b0 dc f2 1c 8c f2 7a 1a
  9f 56 a8 86 ea 73 9d 59
  17 50 8f 9b 75 56 39 f3
  a9 ac fa ed ed ca 7f bf
  a7 94 b1 92 e0 8b f9 ed
  4c 7e c8 59 4c 9f 7b 4e
  19 77 4f f8 38 ec 38 7a
  8f 34 23 da ac 44 9f 59
  db 4e 83 94 3f 90 72 00
  00 1c ee 8c 10 e2 59 80
  57 7c c6 c9 5a 14 e7 04

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 68



(4) EDKEY zone with UTF-8 label and three records

  09 f2 0b 01 67 e6 36 d0
  10 80 7c 4f 00 37 2d 69
  8c 82 6b d9 2b c2 2b d6
  bb 45 e5 27 7c 01 88 1d
  6a 43 60 68 e4 dd f1 c6
  b7 d1 41 6f af a6 69 7c
  25 ed d9 ea e9 91 67 c3

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 69



Zone private key (d):
  5a f7 02 0e e1 91 60 32
  88 32 35 2b bc 6a 68 a8
  d7 1a 7c be 1b 92 99 69
  a7 c6 6d 41 5a 0d 8f 65

Zone identifier (ztype|zkey):
  00 01 00 14 3c f4 b9 24
  03 20 22 f0 dc 50 58 14
  53 b8 5d 93 b0 47 b6 3d
  44 6c 58 45 cb 48 44 5d
  db 96 68 8f

zTLD:
000G051WYJWJ80S04BRDRM2R2H9VGQCKP13VCFA4DHC4BJT88HEXQ5K8HW

Label:
  e5 a4 a9 e4 b8 8b e7 84
  a1 e6 95 b5

Number of records (integer): 3

Record #0 := (
  EXPIRATION: 8143584694000000 us
  00 1c ee 8c 10 e2 59 80

  DATA_SIZE:
  00 10

  TYPE:
  00 00 00 1c

  FLAGS:   00 00

  DATA:
  00 00 00 00 00 00 00 00
  00 00 00 00 de ad be ef

)

Record #1 := (
  EXPIRATION: 17999736901000000 us
  00 3f f2 aa 54 08 db 40

  DATA_SIZE:
  00 06

  TYPE:
  00 01 00 01

  FLAGS:   00 00

  DATA:
  e6 84 9b e7 a7 b0

)

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 70



Record #2 := (
  EXPIRATION: 11464693629000000 us
  00 28 bb 13 ff 37 19 40

  DATA_SIZE:
  00 0b

  TYPE:
  00 00 00 10

  FLAGS:   00 04

  DATA:
  48 65 6c 6c 6f 20 57 6f
  72 6c 64

)

RDATA:
  00 1c ee 8c 10 e2 59 80
  00 10 00 00 00 00 00 1c
  00 00 00 00 00 00 00 00
  00 00 00 00 de ad be ef
  00 3f f2 aa 54 08 db 40
  00 06 00 00 00 01 00 01
  e6 84 9b e7 a7 b0 00 28
  bb 13 ff 37 19 40 00 0b
  00 04 00 00 00 10 48 65
  6c 6c 6f 20 57 6f 72 6c
  64 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00
  00 00 00 00 00 00 00 00

Encryption NONCE|EXPIRATION:
  bb 0d 3f 0f bd 22 42 77
  50 da 5d 69 12 16 e6 c9
  00 1c ee 8c 10 e2 59 80

Encryption key (K):
  3d f8 05 bd 66 87 aa 14
  20 96 28 c2 44 b1 11 91
  88 c3 92 56 37 a4 1e 5d
  76 49 6c 29 45 dc 37 7b

Storage key (q):
  ba f8 21 77 ee c0 81 e0
  74 a7 da 47 ff c6 48 77
  58 fb 0d f0 1a 6c 7f bb
  52 fc 8a 31 be f0 29 af
  74 aa 0d c1 5a b8 e2 fa
  7a 54 b4 f5 f6 37 f6 15
  8f a7 f0 3c 3f ce be 78
  d3 f9 d6 40 aa c0 d1 ed

ZKDF(zkey):

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 71



  74 f9 00 68 f1 67 69 53
  52 a8 a6 c2 eb 98 48 98
  c5 3a cc a0 98 04 70 c6
  c8 12 64 cb dd 78 ad 11

nonce := SHA-256 (dh[32..63] || h):
  f8 6a b5 33 8a 74 d7 a1
  d2 77 ea 11 ff 95 cb e8
  3a cf d3 97 3b b4 ab ca
  0a 1b 60 62 c3 7a b3 9c

Derived private key (d', big-endian):
  17 c0 68 a6 c3 f7 20 de
  0e 1b 69 ff 3f 53 e0 5d
  3f e5 c5 b0 51 25 7a 89
  a6 3c 1a d3 5a c4 35 58

BDATA:
  4e b3 5a 50 d4 0f e1 a4
  29 c7 f4 b2 67 a0 59 de
  4e 2c 8a 89 a5 ed 53 d3
  d4 92 58 59 d2 94 9f 7f
  30 d8 a2 0c aa 96 f8 81
  45 05 2d 1c da 04 12 49
  8f f2 5f f2 81 6e f0 ce
  61 fe 69 9b fa c7 2c 15
  dc 83 0e a9 b0 36 17 1c
  cf ca bb dd a8 de 3c 86
  ed e2 95 70 d0 17 4b 82
  82 09 48 a9 28 b7 f0 0e
  fb 40 1c 10 fe 80 bb bb
  02 76 33 1b f7 f5 1b 8d
  74 57 9c 14 14 f2 2d 50
  1a d2 5a e2 49 f5 bb f2
  a6 c3 72 59 d1 75 e4 40
  b2 94 39 c6 05 19 cb b1

RRBLOCK:
  00 00 01 00 00 01 00 14
  74 f9 00 68 f1 67 69 53
  52 a8 a6 c2 eb 98 48 98
  c5 3a cc a0 98 04 70 c6
  c8 12 64 cb dd 78 ad 11
  75 6d 2c 15 7a d2 ea 4f
  c0 b1 b9 1c 08 03 79 44
  61 d3 de f2 0d d1 63 6c
  fe dc 03 89 c5 49 d1 43
  6c c3 5b 4e 1b f8 89 5a
  64 6b d9 a6 f4 6b 83 48
  1d 9c 0e 91 d4 e1 be bb
  6a 83 52 6f b7 25 2a 06
  00 1c ee 8c 10 e2 59 80
  4e b3 5a 50 d4 0f e1 a4
  29 c7 f4 b2 67 a0 59 de
  4e 2c 8a 89 a5 ed 53 d3
  d4 92 58 59 d2 94 9f 7f
  30 d8 a2 0c aa 96 f8 81
  45 05 2d 1c da 04 12 49

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 72



D.3. Zone Revocation 

The following is an example revocation for a PKEY zone:

  8f f2 5f f2 81 6e f0 ce
  61 fe 69 9b fa c7 2c 15
  dc 83 0e a9 b0 36 17 1c
  cf ca bb dd a8 de 3c 86
  ed e2 95 70 d0 17 4b 82
  82 09 48 a9 28 b7 f0 0e
  fb 40 1c 10 fe 80 bb bb
  02 76 33 1b f7 f5 1b 8d
  74 57 9c 14 14 f2 2d 50
  1a d2 5a e2 49 f5 bb f2
  a6 c3 72 59 d1 75 e4 40
  b2 94 39 c6 05 19 cb b1

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 73



Zone private key (d, big-endian):
  6f ea 32 c0 5a f5 8b fa
  97 95 53 d1 88 60 5f d5
  7d 8b f9 cc 26 3b 78 d5
  f7 47 8c 07 b9 98 ed 70

Zone identifier (ztype|zkey):
  00 01 00 00 2c a2 23 e8
  79 ec c4 bb de b5 da 17
  31 92 81 d6 3b 2e 3b 69
  55 f1 c3 77 5c 80 4a 98
  d5 f8 dd aa

Encoded zone identifier (zkl = zTLD):
000G001CM8HYGYFCRJXXXDET2WRS50EP7CQ3PTANY71QEQ409ACDBY6XN8

Difficulty (5 base difficulty + 2 epochs): 7

Signed message:
  00 00 00 34 00 00 00 03
  00 05 ff 1c 56 e4 b2 68
  00 01 00 00 2c a2 23 e8
  79 ec c4 bb de b5 da 17
  31 92 81 d6 3b 2e 3b 69
  55 f1 c3 77 5c 80 4a 98
  d5 f8 dd aa

Proof:
  00 05 ff 1c 56 e4 b2 68
  00 00 39 5d 18 27 c0 00
  38 0b 54 aa 70 16 ac a2
  38 0b 54 aa 70 16 ad 62
  38 0b 54 aa 70 16 af 3e
  38 0b 54 aa 70 16 af 93
  38 0b 54 aa 70 16 b0 bf
  38 0b 54 aa 70 16 b0 ee
  38 0b 54 aa 70 16 b1 c9
  38 0b 54 aa 70 16 b1 e5
  38 0b 54 aa 70 16 b2 78
  38 0b 54 aa 70 16 b2 b2
  38 0b 54 aa 70 16 b2 d6
  38 0b 54 aa 70 16 b2 e4
  38 0b 54 aa 70 16 b3 2c
  38 0b 54 aa 70 16 b3 5a
  38 0b 54 aa 70 16 b3 9d
  38 0b 54 aa 70 16 b3 c0
  38 0b 54 aa 70 16 b3 dd
  38 0b 54 aa 70 16 b3 f4
  38 0b 54 aa 70 16 b4 42
  38 0b 54 aa 70 16 b4 76
  38 0b 54 aa 70 16 b4 8c
  38 0b 54 aa 70 16 b4 a4
  38 0b 54 aa 70 16 b4 c9
  38 0b 54 aa 70 16 b4 f0
  38 0b 54 aa 70 16 b4 f7
  38 0b 54 aa 70 16 b5 79
  38 0b 54 aa 70 16 b6 34

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 74



The following is an example revocation for an EDKEY zone:

  38 0b 54 aa 70 16 b6 8e
  38 0b 54 aa 70 16 b7 b4
  38 0b 54 aa 70 16 b8 7e
  38 0b 54 aa 70 16 b8 f8
  38 0b 54 aa 70 16 b9 2a
  00 01 00 00 2c a2 23 e8
  79 ec c4 bb de b5 da 17
  31 92 81 d6 3b 2e 3b 69
  55 f1 c3 77 5c 80 4a 98
  d5 f8 dd aa 08 ca ff de
  3c 6d f1 45 f7 e0 79 81
  15 37 b2 b0 42 2d 5e 1f
  b2 01 97 81 ec a2 61 d1
  f9 d8 ea 81 0a bc 2f 33
  47 7f 04 e3 64 81 11 be
  71 c2 48 82 1a d6 04 f4
  94 e7 4d 0b f5 11 d2 c1
  62 77 2e 81

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 75



Zone private key (d):
  5a f7 02 0e e1 91 60 32
  88 32 35 2b bc 6a 68 a8
  d7 1a 7c be 1b 92 99 69
  a7 c6 6d 41 5a 0d 8f 65

Zone identifier (ztype|zkey):
  00 01 00 14 3c f4 b9 24
  03 20 22 f0 dc 50 58 14
  53 b8 5d 93 b0 47 b6 3d
  44 6c 58 45 cb 48 44 5d
  db 96 68 8f

Encoded zone identifier (zkl = zTLD):
000G051WYJWJ80S04BRDRM2R2H9VGQCKP13VCFA4DHC4BJT88HEXQ5K8HW

Difficulty (5 base difficulty + 2 epochs): 7

Signed message:
  00 00 00 34 00 00 00 03
  00 05 ff 1c 57 35 42 bd
  00 01 00 14 3c f4 b9 24
  03 20 22 f0 dc 50 58 14
  53 b8 5d 93 b0 47 b6 3d
  44 6c 58 45 cb 48 44 5d
  db 96 68 8f

Proof:
  00 05 ff 1c 57 35 42 bd
  00 00 39 5d 18 27 c0 00
  58 4c 93 3c b0 99 2a 08
  58 4c 93 3c b0 99 2d f7
  58 4c 93 3c b0 99 2e 21
  58 4c 93 3c b0 99 2e 2a
  58 4c 93 3c b0 99 2e 53
  58 4c 93 3c b0 99 2e 8e
  58 4c 93 3c b0 99 2f 13
  58 4c 93 3c b0 99 2f 2d
  58 4c 93 3c b0 99 2f 3c
  58 4c 93 3c b0 99 2f 41
  58 4c 93 3c b0 99 2f fd
  58 4c 93 3c b0 99 30 33
  58 4c 93 3c b0 99 30 82
  58 4c 93 3c b0 99 30 a2
  58 4c 93 3c b0 99 30 e1
  58 4c 93 3c b0 99 31 ce
  58 4c 93 3c b0 99 31 de
  58 4c 93 3c b0 99 32 12
  58 4c 93 3c b0 99 32 4e
  58 4c 93 3c b0 99 32 9f
  58 4c 93 3c b0 99 33 31
  58 4c 93 3c b0 99 33 87
  58 4c 93 3c b0 99 33 8c
  58 4c 93 3c b0 99 33 e5
  58 4c 93 3c b0 99 33 f3
  58 4c 93 3c b0 99 34 26
  58 4c 93 3c b0 99 34 30

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 76



Acknowledgements 

The authors thank all reviewers for their comments. In particular, we thank , 

, , , and  for their insightful and detailed technical reviews. We

thank  and  for the internationalization reviews. We thank NLnet and NGI

DISCOVERY for funding work on the GNU Name System.

  58 4c 93 3c b0 99 34 68
  58 4c 93 3c b0 99 34 88
  58 4c 93 3c b0 99 34 8a
  58 4c 93 3c b0 99 35 4c
  58 4c 93 3c b0 99 35 bd
  00 01 00 14 3c f4 b9 24
  03 20 22 f0 dc 50 58 14
  53 b8 5d 93 b0 47 b6 3d
  44 6c 58 45 cb 48 44 5d
  db 96 68 8f 04 ae 26 f7
  63 56 5a b7 aa ab 01 71
  72 4f 3c a8 bc c5 1a 98
  b7 d4 c9 2e a3 3c d9 34
  4c a8 b6 3e 04 53 3a bf
  1a 3c 05 49 16 b3 68 2c
  5c a8 cb 4d d0 f8 4c 3b
  77 48 7a ac 6e ce 38 48
  0b a9 d5 00

D. J. Bernstein S.

Bortzmeyer A. Farrel E. Lear R. Salz

J. Yao J. Klensin

Authors' Addresses 

Martin Schanzenbach

Fraunhofer AISEC

Lichtenbergstrasse 11

  85748 Garching

Germany

 martin.schanzenbach@aisec.fraunhofer.de Email:

Christian Grothoff

Berner Fachhochschule

Hoeheweg 80

CH-   2501 Biel/Bienne

Switzerland

 christian.grothoff@bfh.ch Email:

Bernd Fix

GNUnet e.V.

Boltzmannstrasse 3

  85748 Garching

Germany

 fix@gnunet.org Email:

RFC 0000 The GNU Name System October 2023

Schanzenbach, et al. Informational Page 77

mailto:martin.schanzenbach@aisec.fraunhofer.de
mailto:christian.grothoff@bfh.ch
mailto:fix@gnunet.org

	RFC 0000
	The GNU Name System
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation

	2. Terminology
	3. Overview
	3.1. Names and Zones
	3.2. Publishing Binding Information
	3.3. Resolving Names

	4. Zones
	4.1. Zone Top-Level Domain (zTLD)
	4.2. Zone Revocation

	5. Resource Records
	5.1. Zone Delegation Records
	5.1.1. PKEY
	5.1.2. EDKEY

	5.2. Redirection Records
	5.2.1. REDIRECT
	5.2.2. GNS2DNS

	5.3. Auxiliary Records
	5.3.1. LEHO
	5.3.2. NICK
	5.3.3. BOX


	6. Record Encoding for Remote Storage
	6.1. The Storage Key
	6.2. Plaintext Record Data (RDATA)
	6.3. The Resource Records Block

	7. Name Resolution
	7.1. Start Zones
	7.2. Recursion
	7.3. Record Processing
	7.3.1. REDIRECT
	7.3.2. GNS2DNS
	7.3.3. BOX
	7.3.4. Zone Delegation Records
	7.3.5. NICK


	8. Internationalization and Character Encoding
	9. Security and Privacy Considerations
	9.1. Availability
	9.2. Agility
	9.3. Cryptography
	9.4. Abuse Mitigation
	9.5. Zone Management
	9.6. DHTs as Remote Storage
	9.7. Revocations
	9.8. Zone Privacy
	9.9. Zone Governance
	9.10. Namespace Ambiguity

	10. GANA Considerations
	10.1. GNS Record Types Registry
	10.2. .alt Subdomains Registry

	11. IANA Considerations
	12. Implementation and Deployment Status
	13. References
	13.1. Normative References
	13.2. Informative References

	Appendix A. Usage and Migration
	A.1. Zone Dissemination
	A.2. Start Zone Configuration
	A.3. Globally Unique Names and the Web
	A.4. Migration Paths

	Appendix B. Example Flows
	B.1. AAAA Example Resolution
	B.2. REDIRECT Example Resolution
	B.3. GNS2DNS Example Resolution

	Appendix C. Base32GNS
	Appendix D. Test Vectors
	D.1. Base32GNS Encoding/Decoding
	D.2. Record Sets
	D.3. Zone Revocation

	Acknowledgements
	Authors' Addresses


