I nt ernet Engi neering Task Force (I ETF) G Pelletier

Request for Comments: 6846 InterDigital Comunications
bsol etes: 4996 K. Sandl und
Cat egory: Standards Track Eri csson
| SSN: 2070-1721 L- E. Jonsson

M West

Si enens/ Roke Manor
January 2013

RObust Header Conpression (ROHO):
A Profile for TCP/I P (ROHC TCP)

Abstract

Thi s docunent specifies a RCbust Header Conpression (ROHC) profile
for conpression of TCP/IP packets. The profile, called ROHC TCP
provi des efficient and robust conpression of TCP headers, including
frequently used TCP options such as sel ective acknow edgnments (SACKs)
and Ti nest anps.

ROHC- TCP wor ks wel | when used over links with significant error rates
and long round-trip tines. For many bandwi dth-linmited |inks where
header conpression is essential, such characteristics are conmon

This specification obsoletes RFC 4996. 1t fixes a technical issue
with the SACK conpression and clarifies other conpression nethods
used.

Status of This Meno
This is an Internet Standards Track docunent.

This docunent is a product of the Internet Engi neering Task Force
(IETF). It represents the consensus of the |IETF comunity. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Group (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,

and how to provide feedback on it nay be obtained at
http://ww. rfc-editor.org/info/rfc6846

Pelletier, et al. St andards Track [Page 1]

RFC 6846 ROHC- TCP January 2013

Copyright Notice

Copyright (c) 2013 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this document. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided wi thout warranty as
described in the Sinplified BSD License.

Pelletier, et al. St andards Track [Page 2]

RFC 6846 ROHC- TCP January 2013

Tabl e of Contents

1
2.
3.

Introducti On 5
Term NOl OgY . . .ot 5
Background 7
3.1. Existing TCP/IP Header Conpression Schemes 7
3.2. Cassification of TCP/IP Header Fields 8
Overview of the TCP/IP Profile (Informative) 10
4.1. General ConCePt S ...t 10
4.2. Conpressor and Deconpressor Interactions 10
4.2.1. Conpressor Operation 10
4.2.2. Deconpressor Feedback, 11

4. 3. Packet Formats and Encoding Methods 11
4.3.1. Conpressing TCP Options 11
4.3.2. Conpressing Extension Headers 11

4.4. Expected Conpression Ratios with ROHCTCP 12
Conpressor and Deconpressor Logic (Normative) 13
5.1. Context Initialization 13
5.2. Conpressor Qperation i 13
5.2.1. Conpression LOgiC i 13
5.2.1.1. Optimistic Approach 14

5.2.1.2. Periodic Context Refreshes 14

5.2.2. Feedback LoQiC 14
5.2.2.1. Optional Acknow edgnents (ACKS) 14

5.2.2.2. Negative Acknow edgnents (NACKs) 15

5.2.3. Context Replication 15

5.3. Deconpressor Qperation 16
5.3.1. Deconpressor States and Logic 16
5.3.1.1. Reconstruction and Verification 16

5.3.1.2. Detecting Context Damage 17

5.3.1.3. No Context (NC) State 18

5.3.1.4. Static Context (SC) State 18

5.3.1.5. Full Context (FC) State 19

5.3.2. Feedback LogicC 19
5.3.3. Context Replication 20
Encodings in ROHC-TCP (Normative) 20
6.1. Control Fields in ROHCTCP i, 20
6.1.1. Master Sequence Number (MBN) 20
6.1.2. IP-ID Behavior 21
6.1.3. Explicit Congestion Notification (ECN) 22

6.2. Conpressed Header Chains 22
6.3. Conpressing TCP Options with List Conpression 24
6.3. 1. List ConpressSiOn 25
6.3.2. Table-Based ItemConpression, 26
6.3.3. Encoding of Conpressed Lists 26
6.3.4. ItemTable Mappings 28
6.3.5. Conpressed Lists in Dynamic Chain 30
6.3.6. Irregular Chain Itens for TCP Qptions 30

Pelletier, et al. St andards Track [Page 3]

RFC 6846 ROHC- TCP January 2013

10.
11.
12.
13.

6.3.7. Replication of TCP Options 30

6.4. Profile-Specific Encoding Methods 31
6.4.1. inferred_ip_v4_header_checksum..................... 31
6.4.2. inferred mne_header _checksum...................... 31
6.4.3. inferred_ip_v4 length 32
6.4.4. inferred ip v6 length 32
6.4.5. inferred offset 33
6.4.6. baseheader_extension_headers 33
6.4.7. baseheader_outer_headers 34
6.4.8. Scaled Encoding of Fields 34
6.4.8.1. Scaled TCP Sequence Number Encoding 35

6.4.8.2. Scal ed Acknow edgnent Nunber Encoding 35

6.5. Encoding Methods with External Paraneters 36
Packet Types (NormatiVve) e 38
7.1. Initialization and Refresh (IR) Packets 38
7.2. Context Replication (IR-CR) Packets 40
7.3. Conpressed (CO Packets 42
Header Formats (Normative) i, 43
8.1. Design Rationale for Conpressed Base Headers 44
8.2. Formal Definition of Header Formats 47
8.3. Feedback Formats and Qptions, 88
8.3. 1. Feedback Formats 88
8.3.2. Feedback Options i 89
8.3.2.1. The REJECT Option 89

8.3.2.2. The MBN-NOT-VALID Option 90

8.3.2.3. The MBN OQption 90

8.3.2.4. The CONTEXT_MEMORY Feedback Option 91

8.3.2.5. Unknown Option Types 91

Changes from RFC 4996 91
9.1. Functional Changes, 91
9.2. Non-functional Changes 92
Security Considerati OnNs 92
IANA Considerati ONS 93
ACknow edgment S 93
Ref erences 93
13.1. Normative References i 93
13.2. Informative References i 94

Pelletier, et al. St andards Track [Page 4]

RFC 6846 ROHC- TCP January 2013

1

I ntroduction

There are several reasons to perform header conpression on | ow or
medi um speed links for TCP/IP traffic, and these have al ready been
di scussed in [RFC2507]. Additional considerations that nake

robust ness an inportant objective for a TCP [RFC0O793] conpression
schene are introduced in [RFC4163]. Finally, existing TCP/IP header
conpressi on schenmes ([RFCL144], [RFC2507]) are linmited in their
handl ing of the TCP options field and cannot conpress the headers of
handshaki ng packets (SYNs and FINs).

It is thus desirable for a header conpression schene to be able to
handl e | oss on the |link between the conpression and deconpression
points as well as |oss before the conpression point. The header
conpressi on scherme al so needs to consider how to efficiently conpress
short-lived TCP transfers and TCP options, such as selective

acknow edgments (SACK) ([RFC2018], [RFC2883]) and Ti nest anps

([RFC1323]). TCP options that may be | ess frequently used do not
necessarily need to be conpressed by the protocol, and instead can be
passed transparently w thout reducing the overall conpression
efficiency of other parts of the TCP header

The Robust Header Conpression (ROHC) Wirking G oup has devel oped a
header conpression framework on top of which various profiles can be
defined for different protocol sets, or for different conpression
strategies. This docunent defines a TCP/IP conpression profile for
the ROHC framework [RFC5795], conpliant with the requirenments listed
in [RFC4163].

Specifically, it describes a header conpression schene for TCP/IP
header conpression (ROHC-TCP) that is robust agai nst packet |oss and
that offers enhanced capabilities, in particular for the conpression
of header fields including TCP options. The profile identifier for
TCP/ 1 P conpression is 0x0006.

Ter m nol ogy
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "MAY", and "OPTIONAL" in this

docunent are to be interpreted as described in [RFC2119].

Thi s docunent reuses sone of the ternminology found in [RFC5795]. In
addition, this docunent uses or defines the follow ng terns:

Pelletier, et al. St andards Track [Page 5]

RFC 6846 ROHC- TCP January 2013

Base cont ext

The base context is a context that has been validated by both the
conpressor and the deconpressor. A base context can be used as
the reference when building a new context using replication

Base Context Identifier (Base ClID)

The Base CIDis the CID that identifies the base context, from
whi ch i nformati on needed for context replication can be extracted.

Base header

The Base header is a conpressed representation of the innernost IP
and TCP headers of the unconpressed packet.

Chai ning of itens

A chain groups fields based on sinilar characteristics. ROHC TCP
defines chain items for static, dynamc, replicable, or irregular
fields. Chaining is done by appending an itemfor each header
e.g., to the chain in their order of appearance in the
unconpressed packet. Chaining is useful to construct conpressed
headers froman arbitrary nunber of any of the protocol headers
for which ROHC- TCP defines a conpressed fornat.

Context Replication (CR

Context replication is the nechanismthat establishes and
initializes a new context based on another existing valid context
(a base context). This nmechanismis introduced to reduce the
overhead of the context establishment procedure, and is especially
useful for conpression of nultiple short-lived TCP connecti ons
that may be occurring sinultaneously or near-simultaneously.

ROHC- TCP packet types
ROHC- TCP uses three different packet types: the Initialization and
Refresh (I R) packet type, the Context Replication (IR CR) packet
type, and the Conpressed packet (CO type.

Short-1lived TCP transfer

Short-lived TCP transfers refer to TCP connections transnitting
only small anmpbunts of packets for each single connection

Pelletier, et al. St andards Track [Page 6]

RFC 6846 ROHC- TCP January 2013

3.

3.

Backgr ound

Thi s section provides sonme background information on TCP/ | P header
conpression. The fundanmental s of general header conpression can be
found in [RFC5795]. In the follow ng subsections, two existing
TCP/ | P header conpression schenes are first described along with a

di scussion of their Iimtations, followed by the classification of
TCP/ I P header fields. Finally, sone of the characteristics of short-
lived TCP transfers are sumari zed.

A behavi or analysis of TCP/IP header fields is found in [RFC4413].
1. Existing TCP/IP Header Conpression Schenes

Conpressed TCP (CTCP) and | P Header Conpression (IPHC) are two

di fferent schenes that may be used to conpress TCP/IP headers. Both
schenes transnmit only the differences fromthe previous header in
order to reduce the size of the TCP/IP header

The CTCP [RFC1144] conpressor detects transport-level retransm ssions
and sends a header that updates the context conpletely when they
occur. Wiile CTCP works well over reliable links, it is vulnerable
when used over less reliable Iinks as even a single packet |oss
results in loss of synchronization between the conpressor and the
deconpressor. This in turn leads to the TCP recei ver discarding al
remai ni ng packets in the current w ndow because of a checksum error
This effectively prevents the TCP fast retransmit al gorithm[RFC5681]
frombeing triggered. |In such a case, the conpressor nmust wait unti
TCP tinmes out and retransmits a packet to resynchronize.

To reduce the errors due to the inconsistent contexts between
conpressor and deconpressor when conpressing TCP, | PHC [RFC2507]

i mproves sonmewhat on CTCP by augnenting the repair nechani smof CTCP
with a local repair mechanismcalled TWCE and with a |ink-1ayer
mechani sm based on negative acknow edgnents to request a header that
updat es the context.

The TWCE al gorithm assunes that only the Sequence Nunber field of
TCP segnents is changing with the deltas between consecutive packets
bei ng constant in nost cases. This assunption is, however, not

al ways true, especially when TCP Ti nestanps and SACK options are
used.

The full header request mechani smrequires a feedback channel that
may be unavailable in some circunstances. This channel is used to
explicitly request that the next packet be sent with an unconpressed
header to allow resynchroni zation without waiting for a TCP tineout.

Pelletier, et al. St andards Track [Page 7]

RFC 6846 ROHC- TCP January 2013

In addition, this nechani sm does not performwell on Iinks with |ong
round-trip tines.

Both CTCP and IPHC are also limted in their handling of the TCP
options field. For IPHC, any change in the options field (caused by
Ti nest anps or SACK, for exanple) renders the entire field
unconpressi ble, while for CTCP, such a change in the options field
ef fectively disables TCP/ I P header conpression altogether

Finally, existing TCP/IP conpression schemes do not conpress the
headers of handshaki ng packets (SYNs and FINs). Conpressing these
packets may greatly inprove the overall header conpression ratio for
the cases where nmany short-lived TCP connections share the sane
channel

3.2. (dassification of TCP/| P Header Fields

Header conpression is possible due to the fact that there is nuch
redundancy between header field values within packets, especially

bet ween consecutive packets. To utilize these properties for TCP/IP
header conpression, it is inportant to understand the change patterns
of the various header fields.

All fields of the TCP/IP packet header have been classified in detai
in [RFC4413]. The nmain conclusion is that nost of the header fields
can easily be conpressed away since they sel domor never change. The
followi ng fields do, however, require nore sophisticated nmechani sns:

- IPv4 ldentification (16 bits) - IP-1D
- TCP Sequence Nunber (32 bits) - SN
- TCP Acknow edgrment Number (32 bits)
- TCP Reserved (4 bits)
- TCP ECN fl ags (2 bits) - ECN
- TCP W ndow (16 bits)
- TCP Options
o Maxi mum Segnent Size (32 bits) - MsS
o W ndow Scal e (24 bits) - WSCALE
0 SACK Permitted (16 bits)
0 TCP SACK (80, 144, 208, or 272 bits) - SACK
o TCP Tinestanp (80 bits) - TS

The assignnment of |P-1D values can be done in various ways, usually
one of sequential, sequential junp, or random as described in
Section 4.1.3 of [RFC4413]. Some |Pv4 stacks do use a sequentia
assi gnnent when generating | P-1D values but do not transnit the
contents of this field in network byte order; instead, it is sent
with the two octets reversed. |In this case, the conpressor can

Pelletier, et al. St andards Track [Page 8]

RFC 6846 ROHC- TCP January 2013

conpress the IP-ID field after swapping the bytes. Consequently, the
deconpressor al so swaps the bytes of the IP-1D after deconpression to
regenerate the original IP-ID. Wth respect to TCP conpression, the
analysis in [RFC4413] reveals that there is no obvious candidate
anong the TCP fields suitable to infer the IP-1D

The change pattern of several TCP fields (Sequence Nunber,

Acknow edgrment Nunber, Wndow, etc.) is very hard to predict. O
particular inportance to a TCP/I P header conpression scheme is the
under st andi ng of the sequence and acknow edgnent nunbers [RFC4413].

Specifically, the TCP Sequence Nunber can be anywhere within a range
defined by the TCP Wndow at any point on the path (i.e., wherever a
conpressor mght be deployed). M ssing packets or retransm ssions
can cause the TCP Sequence Number to fluctuate within the linmts of
this window The TCP W ndow al so bounds the junps in acknow edgment
nunber .

Anot her inportant behavior of the TCP/IP header is the dependency
bet ween t he sequence nunber and the acknow edgment nunber. TCP
connections can be either near-symetrical or show a strong
asymetrical bias with respect to the data traffic. In the latter
case, the TCP connections nainly have one-way traffic (Wb browsing
and file downl oading, for exanple). This nmeans that on the forward
path (fromserver to client), only the sequence nunber is changing
whi | e t he acknow edgrment nunber remains constant for nost packets; on
the backward path (fromclient to server), only the acknow edgnent
nunber is changing and the sequence nunber renmins constant for nost
packets. A conpression schene for TCP shoul d thus have packet
formats suitable for either cases, i.e., packet formats that can
carry either only sequence nunber bits, only acknow edgnent nunber
bits, or both.

In addition, TCP flows can be short-lived transfers. Short-lived TCP
transfers will degrade the performance of header conpression schenes
that establish a new context by initially sending full headers.

Mul tipl e sinultaneous or near sinultaneous TCP connections nay
exhibit much sinmlarity in header field values and context val ues
anong each ot her, which would nake it possible to reuse infornmation
between flows when initializing a new context. A mechanismto this
end, context replication [RFC4164], makes the context establishnment
step faster and nore efficient, by replicating part of an existing
context to a new flow. The conclusion from|[RFC4413] is that part of
the | P sub-context, sone TCP fields, and some context val ues can be
replicated since they sel dom change or change with only a small junp

Pelletier, et al. St andards Track [Page 9]

RFC 6846 ROHC- TCP January 2013

ROHC- TCP al so conpresses the foll owi ng headers: |Pv6 Destination
Options header [RFC2460], |Pv6 Routing header [RFC2460], |Pv6 Hop-by-
Hop Options header [RFC2460], Authentication Header (AH) [RFC4302],
Ceneric Routing Encapsul ation (GRE) [RFC2784] [RFC2890], and the

M ni mal Encapsul ati on (M NE) header [RFC2004].

Headers specific to Mobile IP (for I Pv4d or | Pv6) do not receive any
special treatnment in this docunent, for reasons simlar to those
described in [RFC3095].

4. Overview of the TCP/IP Profile (Informative)
4.1. General Concepts

ROHC- TCP uses the ROHC protocol as described in [RFC5795]. ROHC TCP
supports context replication as defined in [RFC4164]. Context
replication can be particularly useful for short-lived TCP fl ows

[RFC4413] .

4.2. Conpressor and Deconpressor Interactions
4.2.1. Conpressor Operation

Header conpression with ROHC can be conceptually characterized as the
interaction of a conpressor with a deconpressor state nachine. The
conpressor’s task is to minimally send the information needed to
successful ly deconpress a packet, based on a certain confidence
regarding the state of the deconpressor context.

For ROHC- TCP conpression, the conpressor nornmally starts conpression
with the initial assunption that the deconpressor has no useful
information to process the new flow, and sends Initialization and
Refresh (I R) packets. Alternatively, the conpressor may al so support
Context Replication (CR) and use IR CR packets [RFC4164], which
attenpts to reuse context information related to another flow.

The conpressor can then adjust the conpression |evel based on its
confidence that the deconpressor has the necessary information to
successfully process the Conpressed (CO packets that it selects. In
other words, the task of the conpressor is to ensure that the
deconpressor operates in the state that allows deconpression of the
nost efficient CO packet(s), and to allow the deconpressor to nove to
that state as soon as possibl e otherw se.

Pelletier, et al. St andards Track [Page 10]

RFC 6846 ROHC- TCP January 2013

4.2.2. Deconpressor Feedback

The ROHC-TCP profile can be used in environments with or w thout

f eedback capabilities from deconpressor to conpressor. ROHC TCP
however, assumes that if a ROHC feedback channel is available and if
this channel is used at |east once by the deconpressor for a specific
ROHC- TCP context, this channel will be used during the entire
conpression operation for that context. |If the feedback channe

di sappears, conpression should be restarted.

The reception of either positive acknow edgnents (ACKs) or negative
acknow edgnents (NACKs) establishes the feedback channel fromthe
deconpressor for the context for which the feedback was received
Once there is an established feedback channel for a specific context,
the conpressor should make use of this feedback to estimte the
current state of the deconpressor. This helps in increasing the
conmpression efficiency by providing the informati on needed for the
conpressor to achieve the necessary confidence |evel

The ROHC- TCP feedback nmechanismis Iimted in its applicability by
the nunber of (least significant bit (LSB) encoded) master sequence
nunber (MSN) (see Section 6.1.1) bits used in the FEEDBACK-2 for mat
(see Section 8.3). It is not suitable for a deconpressor to use

f eedback al together where the MSN bits in the feedback could wap
around within one round-trip tinme. Instead, unidirectional operation
-- where the conpressor periodically sends |arger context-updating
packets -- is nore appropriate.

4.3. Packet Formats and Encodi ng Met hods

The packet formats and encodi ng net hods used for ROHC- TCP are defined
using the formal notation [RFC4997]. The formal notation is used to
provi de an unanbi guous representati on of the packet formats and a
clear definition of the encodi ng nethods.

4.3.1. Conpressing TCP Options

The TCP options in ROHC-TCP are conpressed using a |ist conpression
encoding that allows option content to be established so that TCP
options can be added to the context w thout having to send all TCP
options unconpressed.

4.3.2. Conpressing Extension Headers
ROHC- TCP conpresses the extension headers as listed in Section 3.2.
These headers are treated exactly as other headers and thus have a

static chain, a dynanmc chain, an irregular chain, and a chain for
context replication (Section 6.2).

Pelletier, et al. St andards Track [Page 11]

RFC 6846 ROHC- TCP January 2013

This means that headers appearing in or disappearing fromthe fl ow
bei ng conpressed will lead to changes to the static chain. However,
t he change pattern of extension headers is not deened to inpair
conpression efficiency with respect to this design strategy.

4.4, Expected Conpression Ratios with ROHC TCP

The following table illustrates typical conpression ratios that can
be expected when using ROHC- TCP and | PHC [RFC2507] .

The figures in the table assune that the conpression context has

al ready been properly initialized. For the TS option, the Ti nestanp
is assuned to change with small values. Al TCP options include a
suitabl e nunber of No Operation (NOP) options [RFC0793] for paddi ng
and/or alignment. Finally, in the exanples for |Pv4, a sequential

| P-1D behavior is assuned.

Total Header Size (octets)

ROHC- TCP | PHC
Unc. DATA ACK DATA ACK
| Pv4+TCP+TS 52 8 8 18 18
| Pv4+TCP+TS 52 7 6 16 16 (1)
| Pv6+TCP+TS 72 8 7 18 18
| Pv6+TCP+no opt 60 6 5 6 6
| Pv6+TCP+SACK 80 - 15 - 80 (2
| Pv6+TCP+SACK 80 - 9 - 26 (3)

(1) The payl oad size of the data streamis constant.

(2) The SACK option appears in the header, but was not present
in the previous packet. Two SACK bl ocks are assuned.

(3) The SACK option appears in the header, and was al so present
in the previous packet (with different SACK bl ocks).
Two SACK bl ocks are assuned

The table belowillustrates the typical initial conpression ratios
for ROHC-TCP and I PHC. The data streamin the exanple is assuned to
be I Pv4+TCP, with a sequential behavior for the IP-ID. The follow ng
options are assunmed present in the SYN packet: TS, MsS, and WSCALE
with an appropriate nunber of NOP options.

Total Header Size (octets)
Unc. ROHC- TCP | PHC
1st packet (SYN) 60 49 60
2nd packet 52 12 52

The figures in the table assune that the conpressor has received an

acknow edgment fromthe deconpressor before conpressing the second
packet, which can be expected when feedback is used in ROHC TCP

Pelletier, et al. St andards Track [Page 12]

RFC 6846 ROHC- TCP January 2013

This is because in the nost common case, the TCP ACKs are expected to
take the sane return path, and because TCP does not send nore packets
until the TCP SYN packet has been acknow edged.

5. Conpressor and Deconpressor Logic (Normative)
5.1. Context Initialization

The static context of ROHC-TCP flows can be initialized in either of
two ways:

1. By using an IR packet as in Section 7.1, where the profile nunber
is 0x06 and the static chain ends with the static part of a TCP
header .

2. By replicating an existing context using the mechani sm defined by
[RFC4164]. This is done with the I R-CR packet defined in
Section 7.2, where the profile nunber is 0x06.

5.2. Conpressor Operation
5.2.1. Conpression Logic

The task of the conpressor is to determ ne what data nust be sent
when conpressing a TCP/| P packet, so that the deconpressor can
successfully reconstruct the original packet based on its current
state. The selection of the type of conpressed header to send thus
depends on a nunber of factors, including:

o The change behavi or of header fields in the flow, e.g., conveying
the necessary infornation within the restrictions of the set of
avai | abl e packet formats.

0 The conpressor’s level of confidence regardi ng deconpressor state,
e.g., by selecting header formats updating the sane type of
i nformati on for a nunber of consecutive packets or fromthe
reception of deconpressor feedback (ACKs and/or NACKS).

0o Additional robustness required for the flow, e.g., periodic
refreshes of static and dynanmic information using IR and | R-DYN
packets when deconpressor feedback is not expected.

The inpact of these factors on the conpressor’s packet type selection
is described in nore detail in the follow ng subsections.

Pelletier, et al. St andards Track [Page 13]

RFC 6846 ROHC- TCP January 2013

In this section, a "higher conpression state" neans that |ess data

will be sent in conpressed packets, i.e., smaller conpressed headers
are used, while a | ower conpression state nmeans that a | arger anmount
of data will be sent using |arger conpressed headers.

5.2.1.1. Optimstic Approach

The optim stic approach is the principle by which a conpressor sends
the same type of information for a nunber of packets (consecutively
or not) until it is fairly confident that the deconpressor has
received the information. The optimstic approach is useful to
ensure robust ness when ROHC-TCP is used to conpress packets over

| ossy links.

Therefore, if field X in the unconpressed packet changes val ue, the
conpressor MJST use a packet type that contains an encoding for field
X until it has gained confidence that the deconpressor has received
at | east one packet containing the new value for X. The conpressor
SHOULD choose a conpressed fornat with the snall est header that can
convey the changes needed to fulfill the optimstic approach

condi tion used.

5.2.1.2. Peri odi ¢ Cont ext Refreshes

When the optimstic approach is used, there will always be a
possibility of deconpression failures since the deconpressor may not
have received sufficient information for correct deconpression

Therefore, until the deconpressor has established a feedback channel
the conpressor SHOULD periodically nove to a | ower conpression state
and send IR and/or | R-DYN packets. These refreshes can be based on
ti meouts, on the nunber of conpressed packets sent for the flow, or
any other strategy specific to the inplenmentation. Once the feedback
channel is established, the deconpressor MAY stop perform ng periodic
refreshes

5.2.2. Feedback Logic
The senmantics of feedback nessages, acknow edgnents (ACKs) and
negative acknow edgnments (NACKs or STATIC NACKs), are defined in
Section 5.2.4.1 of [RFC5795].

5.2.2.1. Optional Acknow edgments (ACKs)

The conpressor MAY use acknow edgnment feedback (ACKs) to nove to a
hi gher conpression state.

Pelletier, et al. St andards Track [Page 14]

RFC 6846 ROHC- TCP January 2013

Upon reception of an ACK for a context-updating packet, the
conpressor obtains confidence that the deconpressor has received the
acknow edged packet and that it has observed changes in the packet
flow up to the acknow edged packet.

This functionality is optional, so a conpressor MJST NOT expect to
get such ACKs, even if a feedback channel is avail able and has been
established for that flow.

5.2.2.2. Negative Acknow edgrments (NACKs)

The conpressor uses feedback fromthe deconpressor to nove to a | ower
conpressi on state (NACKs).

On reception of a NACK feedback, the conpressor SHOULD:
0 assune that only the static part of the deconpressor is valid, and

o0 re-send all dynamic information (via an IR or | R-DYN packet) the
next tine it conpresses a packet for the indicated flow

unless it has confidence that information sent after the packet being
acknow edged al ready provides a suitable response to the NACK
feedback. In addition, the conpressor NMAY use a CO packet carrying a
7-bit Cyclic Redundancy Check (CRC) if it can deternine with enough
confidence what information provides a suitable response to the NACK
f eedback.

On reception of a STATI C- NACK feedback, the conpressor SHOULD
0 assune that the deconpressor has no valid context, and

o re-send all static and all dynanmic information (via an IR packet)
the next tine it conpresses a packet for the indicated fl ow

unless it has confidence that information sent after the packet that
i s being acknow edged al ready provides a suitable response to the
STATI C- NACK f eedback

5.2.3. Context Replication

A conpressor MAY support context replication by inplenenting the
addi ti onal conpression and feedback | ogic defined in [RFC4164].

Pelletier, et al. St andards Track [Page 15]

RFC 6846 ROHC- TCP January 2013

5.3. Deconpressor Qperation
5.3.1. Deconpressor States and Logic

The three states of the deconpressor are No Context (NC), Static
Context (SC), and Full Context (FC). The deconpressor starts inits
| owest conpression state, the NC state. Successful deconpression
will always nove the deconpressor to the FC state. The deconpressor
state machine nornally never |eaves the FC state once it has entered
this state; only repeated deconpression failures will force the
deconpressor to transit downwards to a | ower state.

Below is the state nmachine for the deconpressor. Details of the
transitions between states and deconpression logic are given in the
subsections following the figure.

Success
o - >o oo oo So oo - So oo - So oo - So oo - >- -+
| |
No Static | No Dynami c Success | Success
o>+ | o>+ e e > > - -+ o>+
| | | | | | | | |
| v | | v | v | v
S + i + e e e a - +
| No Context (NC) | | Static Context (SC) | | Full Context (FC) |
e R TSy R S +
n | n |
| Static Context | | Context Damage Assuned
| Danmge Assuned | | |
L <-mm - - - <-mm - - - <----- + L <-mm - - - <-mm - - - <----- +

5.3.1.1. Reconstruction and Verification

When deconpressing an IR or an | R-DYN packet, the deconpressor MJIST
validate the integrity of the received header using CRC-8 validation
[RFC5795]. If validation fails, the packet MJUST NOT be delivered to
upper | ayers.

Upon receiving an | R CR packet, the deconpressor MJST performthe
actions as specified in [RFC4164].

When deconpressi ng other packet types (e.g., CO packets), the
deconpressor MJST validate the outcone of the deconpression attenpt
using CRC verification [RFC5795]. |If verification fails, a
deconpressor inplenmentation MAY attenpt corrective or repair neasures
on the packet, and the result of any attenpt MJST be validated using
the CRC verification; otherw se, the packet MUST NOT be delivered to
upper | ayers.

Pelletier, et al. St andards Track [Page 16]

RFC 6846 ROHC- TCP January 2013

Wien the CRC-8 validation or the CRC verification of the received
header is successful, the deconpressor SHOULD update its context with
the information received in the current header; the deconpressor then
passes the reconstructed packet to the systenis network |ayer.

O herw se, the deconpressor context MJST NOT be updat ed.

If the received packet is older than the current reference packet,
e.g., based on the master sequence number (MSN) in the conpressed
packet, the deconpressor MAY refrain from updating the context using
the information received in the current packet, even if the
correctness of its header was successfully verified.

5.3.1.2. Detecting Context Danmage

Al'l header formats carry a CRC and are context updating. A packet
for which the CRC succeeds updates the reference values of all header
fields, either explicitly (fromthe information about a field carried
within the conpressed header) or inplicitly (fields that are inferred
fromother fields).

The deconpressor may assume that sone or the entire context is
invalid, following one or nore failures to validate or verify a
header using the CRC. Because the deconpressor cannot know t he exact
reason(s) for a CRC failure or what field caused it, the validity of
the context hence does not refer to what exact context entry is
deened valid or not.

Validity of the context rather relates to the detection of a problem
with the context. The deconpressor first assunmes that the type of
information that nost likely caused the failure(s) is the state that
normal |y changes for each packet, i.e., context damage of the dynanic
part of the context. Upon repeated failures and unsuccessfu

repairs, the deconpressor then assunes that the entire context,
including the static part, needs to be repaired, i.e., static context
damage.

Cont ext Damage Detection
The assunption of context danmage neans that the deconpressor will
not attenpt deconpression of a CO header that carries a 3-bit CRC
and only attenpt deconpression of IR 1R DYN, or IR CR headers or
CO headers protected by a CRC 7.

Static Context Danage Detection
The assunption of static context danmage neans that the

deconpressor refrains fromattenpti ng deconpressi on of any type of
header other than the IR header.

Pelletier, et al. St andards Track [Page 17]

RFC 6846 ROHC- TCP January 2013

How t hese assunptions are nade, i.e., how context danmage is detected,
is open to inplenmentations. It can be based on the residual error
rate, where a low error rate makes the deconpressor assume danmage
nmore often than on a high-rate link

The deconpressor inplenents these assunptions by sel ecting the type
of conpressed header for which it nmay attenpt deconpression. In
other words, validity of the context refers to the ability of a
deconpressor to attenpt or not attenpt deconpression of specific
packet types.

5.3.1.3. No Context (NC) State

Initially, while working in the No Context (NC) state, the
deconpressor has not yet successfully deconpressed a packet.

Al'l owi ng deconpressi on

In the NC state, only packets carrying sufficient information on
the static fields (IR and | R-CR packets) can be deconpressed;

ot herwi se, the packet MJUST NOT be deconpressed and MJUST NOT be
delivered to upper |ayers.

Feedback | ogi c:

In the NC state, the deconpressor should send a STATIC-NACK if a
packet of a type other than IR is received, or if deconpression of
an | R packet has failed, subject to the feedback rate Iimtation
as described in Section 5.3.2.

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

5.3.1.4. Static Context (SC) State

When t he deconpressor is in the Static Context (SC) state, only the
static part of the deconpressor context is valid.

Fromthe SC state, the deconpressor noves back to the NC state if
static context danmge is detected

Al'l ow ng deconpression

In the SC state, packets carrying sufficient information on the

dynanmic fields covered by an 8-bit CRC (e.g., IR and IR-DYN) or CO
packets covered by a 7-bit CRC can be deconpressed; otherw se, the
packet MUST NOT be deconpressed and MJUST NOT be delivered to upper

| ayers.

Pelletier, et al. St andards Track [Page 18]

RFC 6846 ROHC- TCP January 2013

Feedback | ogi c:

In the SC state, the deconpressor should send a STATIC-NACK if CRC
validation of an IRIR-DYNIRCR fails and static context damage
is assuned. |If any other packet type is received, the
deconpressor should send a NACK. Both of the above cases are
subject to the feedback rate linitation as described in

Section 5.3.2.

Once a packet has been validated and deconpressed correctly, the
deconpressor MJST transit to the FC state.

5.3.1.5. Full Context (FC) State

In the Full Context (FC) state, both the static and the dynanic parts
of the deconpressor context are valid. Fromthe FC state, the
deconpressor noves back to the SC state if context damage is

det ect ed.

Al | owi ng deconpressi on

In the FC state, deconpression can be attenpted regardl ess of the
type of packet received

Feedback | ogi c:

In the FC state, the deconpressor should send a NACK i f the
deconpressi on of any packet type fails and context danmage is
assuned, subject to the feedback rate limtation as described in
Section 5.3.2.

5.3.2. Feedback Logic

The deconpressor MAY send positive feedback (ACKs) to initially
establish the feedback channel for a particular flow Either
positive feedback (ACKs) or negative feedback (NACKs) establishes
thi s channel

Once the feedback channel is established, the deconpressor is

REQUI RED t o conti nue sendi ng NACKs or STATIC- NACKs for as long as the
context is associated with the same profile, in this case with
profil e 0x0006, as per the logic defined for each state in

Section 5.3.1.

The deconpressor MAY send ACKs upon successful deconpression of any
packet type. In particular, when a packet carrying a significant
context update is correctly deconpressed, the deconpressor MAY send
an ACK.

Pelletier, et al. St andards Track [Page 19]

RFC 6846 ROHC- TCP January 2013

The deconpressor should limt the rate at which it sends feedback
for both ACKs and STATI C- NACK/ NACKs, and shoul d avoi d sendi ng
unnecessary duplicates of the sane type of feedback nessage that may
be associated to the sane event.

5.3.3. Context Replication

ROHC- TCP supports context replication; therefore, the deconpressor
MUST i npl enent the additional deconpressor and feedback | ogic defined
in [RFC4164].

6. Encodings in ROHC- TCP (Nornmative)
6.1. Control Fields in ROHC TCP

In ROHC- TCP, a nunber of control fields are used by the deconpressor
inits interpretation of the format of the packets received fromthe
conpr essor.

A control fieldis a field that is transnitted fromthe conpressor to
t he deconpressor, but is not part of the unconpressed header. Val ues
for control fields can be set up in the context of both the
conpressor and the deconmpressor. Once established at the
deconpressor, the values of these fields should be kept until updated
by anot her packet.

6.1.1. Master Sequence Nunber (NMSN)
There is no field in the TCP header that can act as the master
sequence nunber for TCP conpression, as explained in [RFC4413],
Section 5. 6.
To overcone this problem ROHC TCP introduces a control field called
the Master Sequence Nunmber (MSN) field. The MSN field is created at
the conpressor, rather than using one of the fields already present
in the unconpressed header. The conpressor increnents the val ue of
the MSN by one for each packet that it sends.
The MSN field has the following two functions:
1. Differentiating between packets when sendi ng feedback data.

2. Inferring the value of increnmenting fields such as the IP-1D

Pelletier, et al. St andards Track [Page 20]

RFC 6846 ROHC- TCP January 2013

The MSN field is present in every packet sent by the conpressor. The
MBN is LSB encoded within the CO packets, and the 16-bit MSN is sent
in full in IR IR DYN packets. The deconpressor always sends the MSN
as part of the feedback information. The conpressor can | ater use
the MSN to infer which packet the deconpressor is acknow edgi ng.

When the MSN is initialized, it SHOULD be initialized to a random
val ue. The conpressor should only initialize a new MSN for the
initial IR or IR CR packet sent for a CID that corresponds to a
context that is not already associated with this profile. In other
words, if the conpressor reuses the same CID to conpress nany TCP
flows one after the other, the MSNis not reinitialized but rather
continues to increnent nonotonically.

For context replication, the conpressor does not use the MSN of the
base context when sending the | R CR packet, unless the replication
process overwites the base context (i.e., Base CID == CID)

I nstead, the conpressor uses the value of the MSN if it already
exists in the ROHC- TCP context being associated with the new fl ow
(CID); otherwise, the MSNis initialized to a new val ue

6.1.2. | P-1 D Behavi or

The IP-1D field of the | Pv4 header can have different change
patterns. Conceptually, a conpressor nonitors changes in the val ue
of the IP-1D field and sel ects encodi ng net hods and packet formats
that are the closest match to the observed change pattern

ROHC- TCP defines different types of conpression techniques for the
IP-1D, to provide the flexibility to conpress any of the behaviors it
may observe for this field: sequential in network byte order (NBO),
sequenti al byte-swapped, random (RND), or constant to a val ue of
zero.

The conpressor nonitors changes in the value of the IP-ID field for a
nunber of packets, to identify which one of the above |isted
conpression alternatives is the closest match to the observed change
pattern. The conpressor can then sel ect packet formats and encodi ng
nmet hods based on the identified field behavior

If nore than one |level of IP headers is present, ROHC TCP can assign
a sequential behavior (NBO or byte-swapped) only to the IP-ID of the
i nnernost | P header. This is because only this IP-1D can possibly
have a sufficiently close correlation with the MSN (see al so

Section 6.1.1) to conpress it as a sequentially changing field.
Therefore, a conpressor MJST NOT assign either the sequential (NBO
or the sequential byte-swapped behavior to tunneling headers.

Pelletier, et al. St andards Track [Page 21]

RFC 6846 ROHC- TCP January 2013

The control field for the I P-1D behavior determ nes which set of
packet fornmats will be used. These control fields are also used to
determine the contents of the irregular chain item (see Section 6.2)
for each | P header.

6.1.3. Explicit Congestion Notification (ECN)

Wien ECN [RFC3168] is used once on a flow, the ECN bits coul d change
quite often. ROHC-TCP maintains a control field in the context to

i ndi cate whether or not ECN is used. This control field is
transmitted in the dynam c chain of the TCP header, and its val ue can
be updated using specific conpressed headers carrying a 7-bit CRC

When this control field indicates that ECN is being used, itens of
all IP and TCP headers in the irregular chain include bits used for
ECN. To preserve octet-alignnent, all of the TCP reserved bits are
transmtted and, for outer |IP headers, the entire Type of Service/
Traffic dass (TOS/TC) field is included in the irregular chain.
When there is only one | P header present in the packet (i.e., no IP
tunneling is used), this conpression behavior allows the conpressor
to handl e changes in the ECN bits by adding a single octet to the
conpressed header.

The reason for including the ECN bits of all |IP headers in the
conpressed packet when the control field is set is that the profile
needs to efficiently conpress flows containing |IP tunnels using the
"full-functionality option" of Section 9.1 of [RFC3168]. For these
flows, a change in the ECN bits of an inner |IP header is propagated
to the outer IP headers. When the "limted-functionality" option is
used, the conpressor will therefore sonetimes send one octet nore
than necessary per tunnel header, but this has been considered a
reasonabl e trade-of f when designing this profile.

6.2. Conpressed Header Chains

Sone packet types use one or nore chains containing sub-header
information. The function of a chainis to group fields based on
simlar characteristics, such as static, dynamic, or irregular
fields. Chaining is done by appending an itemfor each header to the
chain in their order of appearance in the unconpressed packet,
starting fromthe fields in the outernost header

Chains are defined for all headers conpressed by ROHC-TCP, as listed

below. Also listed are the nanmes of the encodi ng net hods used to
encode each of these protocol headers.

Pelletier, et al. St andards Track [Page 22]

RFC 6846

o TCP [RFC0793],
o |Pv4 [RFCO791],
o |Pv6 [RFC2460],

o AH [RFC4302],

ROHC- TCP January 2013
encodi ng nethod: "tcp"
encodi ng et hod: "i pv4"
encodi ng net hod: "ipv6"

encodi ng net hod: "ah"

0 GCRE [RFC2784] [RFC2890], encodi ng net hod: "gre"

o M NE [RFC2004] ,

encodi ng net hod: "m ne"

0 |Pve Destination Options header [RFC2460], encodi ng mnet hod:

"ip_dest _opt"

0 | Pv6 Hop-by-Hop Options header [RFC2460], encodi ng net hod:

"i p_hop_opt"

0 |Pv6 Routing header [RFC2460], encoding nethod: "ip_rout_opt"

Static chain:

The static chain consists of one itemfor each header of the chain
of protocol

headers to be conpressed, starting fromthe outernost

| P header and ending with a TCP header. |In the fornmal description
of the packet formats, this static chain itemfor each header is a
format whose nane is suffixed by "_static". The static chainis

only used in IR packets.

Dynamni ¢ chai n:

The dynami ¢ chain consists of one itemfor each header of the
chain of protocol headers to be conpressed, starting fromthe

out er nost

| P header and ending with a TCP header. The dynamc

chain itemfor the TCP header al so contains a conpressed |ist of
TCP options (see Section 6.3). In the formal description of the

packet fornats,

the dynanmic chain itemfor each header type is a

format whose nane is suffixed by " dynamic". The dynamic chain is
used in both IR and | R-DYN packets.

Replicate chain:

The replicate chain consists of one itemfor each header in the
chain of protocol headers to be conpressed, starting fromthe

out er nost

| P header and ending with a TCP header. The replicate

chain itemfor the TCP header al so contains a conpressed |ist of
TCP options (see Section 6.3). In the formal description of the

packet fornats,

Pel | eti er,

et al.

the replicate chain itemfor each header type is a

St andards Track [Page 23]

RFC 6846 ROHC- TCP January 2013

format whose nane is suffixed by " replicate". Header fields that
are not present in the replicate chain are replicated fromthe
base context. The replicate chain is only used in the IR CR
packet .

I rregul ar chain:

The structure of the irregular chain is anal ogous to the structure
of the static chain. For each conpressed packet, the irregular
chain is appended at the specified location in the general format
of the conpressed packets as defined in Section 7.3. This chain
al so includes the irregular chain itens for TCP options as defined
in Section 6.3.6, which are placed directly after the irregul ar
chain item of the TCP header, and in the sane order as the options

appear in the unconpressed packet. 1In the formal description of
the packet formats, the irregular chain itemfor each header type
is a format whose nane is suffixed by " _irregular”. The irregular

chain is used only in CO packets.

The format of the irregular chain for the innernost |P header
differs fromthe format of outer IP headers, since this header is
part of the conpressed base header.

6.3. Conpressing TCP Options with List Conpression

This section describes in detail how list conpression is applied to

the TCP options. 1In the definition of the packet formats for ROHC

TCP, the nobst frequent TCP options have one encodi ng nethod each, as
listed in the table bel ow

SACK
Ceneric options

tcp_opt _sack
tcp_opt _generic

oo o e e e e e e e i e oo +
| Option nane | Encoding nethod nane |
o e e oo o e e e e e oo +
NOP	tcp_opt_nop
EQL	tcp_opt_eol
MBS	tcp_opt_nss
WNDOWSCALE	tcp_opt_wscale

| TI MESTAMP | tcp_opt _ts |
| SACK-PERM TTED | tcp_opt_sack_permtted

| | |
| | |

Each of these encodi ng nethods has an unconpressed format, a fornat
suffixed by "_list_itent and a format suffixed by "_irregular”. In
some cases, a single encoding nethod may have nultiple "_list_itent

Pelletier, et al. St andards Track [Page 24]

RFC 6846 ROHC- TCP January 2013

or " _irregular" formats, in which case bindings inside these fornats
determine what format is used. This is further described in the
foll owi ng sections.

6.3.1. List Conpression

The TCP options in the unconpressed packet can be represented as an
ordered list, whose order and presence are usually constant between
packets. The generic structure of such a list is as follows:

list: | item1 | item2 | | itemn |

To conpress this list, ROHC TCP uses a list conpression schene, which
conpresses each of these itenms individually and conbines theminto a
conpressed |ist.

The basic principles of |ist-based conpression are the foll ow ng:

1) When a context is being initialized, a conplete representation
of the conpressed list of options is transmitted. Al options
that have any content are present in the conpressed list of itens
sent by the conpressor.

Then, once the context has been initialized:

2) VWhen the structure AND the content of the list are unchanged,
no i nformation about the list is sent in conpressed headers.

3) When the structure of the list is constant, and when only the
content defined within the irregular format for one or nore
options is changed, no information about the list needs to be sent
in conpressed base headers; the irregular content is sent as part
of the irregular chain, as described in Section 6.3.6.

4) Wien the structure of the |list changes, a conpressed list is
sent in the conpressed base header, including a representation of
its structure and order. Content defined within the irregular
format of an option can still be sent as part of the irregul ar
chain (as described in Section 6.3.6), provided that the item
content is not part of the conpressed |ist.

Pelletier, et al. St andards Track [Page 25]

RFC 6846 ROHC- TCP January 2013

6.3.2. Tabl e-Based |Item Conpression

The tabl e-based item conpression conpresses individual itens sent in
conpressed lists. The conpressor assigns a unique identifier,
"Index", to each item "Itent, of a list.

Conpressor Logic

The conpressor conceptually maintains an itemtable containing all
items, indexed using "Index". The (Index, Iten) pair is sent
together in conpressed lists until the conpressor gains enough
confidence that the deconpressor has observed t he mappi ng between
itenms and their respective index. Confidence is obtained fromthe
reception of an acknow edgnent fromthe deconpressor, or by
sending (I ndex, Iten) pairs using the optinistic approach. Once
confidence is obtained, the index alone is sent in conpressed
lists to indicate the presence of the itemcorresponding to this

i ndex.

The conpressor nmay reassign an existing index to a newitem by
re-establishing the mappi ng using the procedure described above.

Deconpr essor Logic
The deconpressor conceptually maintains an itemtabl e that
contains all (Index, Item) pairs received. The itemtable is
updat ed whenever an (lndex, Iten) pair is received and
deconpression is successfully verified using the CRC. The
deconpressor retrieves the itemfromthe table whenever an index
wi t hout an acconpanying itemis received.
If an index wi thout an acconpanying itemis received and the
deconpressor does not have any context for this index, the header
MUST be di scarded and a NACK SHOULD be sent.

6.3.3. Encoding of Conpressed Lists
Each item present in a conpressed list is represented by:
0 an index into the table of itens

0 a presence bit indicating if a conpressed representation of the
itemis present in the |ist

o an item (if the presence bit is set)

Deconpression of an itemw Il fail if the presence bit is not set and
t he deconpressor has no entry in the context for that item

Pelletier, et al. St andards Track [Page 26]

RFC 6846 ROHC- TCP January 2013

A conpressed list of TCP options uses the follow ng encodi ng:

0 1 2 3 4 5 6 7
M S S S

| Reserved |PS | m

B LT, oI S S S

| Xl 1, ..., XI_m | moctets, or m* 4 bits
/ R LY

| : Paddi ng :if PS =0 and mis odd

S S S

I
/ iteml1, ..., itemn / variable
I I
I LTk Il SIS e SRS
Reserved: MJUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.
PS: Indicates size of Xl fields:

PS = 0 indicates 4-bit Xl fields;

PS = 1 indicates 8-bit Xl fields.

m Nunber of Xl item(s) in the conpressed list.

XI_1, ..., XI_m mXl itens. Each Xl represents one TCP option in
t he unconpressed packet, in the sane order as they appear in the
unconpr essed packet.

The format of an Xl itemis as foll ows:
B e I g

| X| | ndex
B e g

PS

1
o

0 1 2 3 4 5 6 7
M S S S

PS = 1. | X | Reserved | I ndex
B T o SR S S

Pelletier, et al. St andards Track [Page 27]

RFC 6846 ROHC- TCP January 2013

6. 3. 4.

X: I ndicates whether the itemis present in the list:

X =1 indicates that the itemcorresponding to the Index is
sent in the iteml1, ..., itemn |ist;

X =0 indicates that the itemcorresponding to the Index is
not sent and is instead included in the irregular chain.

Reserved: MJUST be set to zero; otherw se, the deconpressor MJST
di scard the packet.

Index: An index into the itemtable. See Section 6.3.4.

When 4-bit Xl itenms are used, the Xl itens are placed in octets
in the follow ng manner:

0 1 2 3 4 5 6 7
e

| Xk | XI k +1 |
S S S

Paddi ng: A 4-bit padding field is present when PS = 0 and the
nunber of Xls is odd. The Padding field MIUST be set to zero;
ot herwi se, the deconpressor MJST discard t he packet.

Iltem1, ..., itemn: Each itemcorresponds to an XI with X =1 in
Xl 1, ..., XI m The format of the entries in the itemlist is
described in the table in Section 6.3. The conpressed format(s)
suffixed by " _list_itent in the encoding nethods defines the item

inside the conpressed itemlist.

Item Tabl e Mappi ngs

The itemtable for TCP options list conpression is linmted to 16
different itens, since it is unlikely that any packet flow will
contain a |l arger nunber of unique options.

The mappi ng between the TCP option type and table indexes are listed

in

t he tabl e bel ow

Pelletier, et al. St andards Track [Page 28]

RFC 6846 ROHC- TCP January 2013

oo R +
| Option nane | Tabl e index
o e e oo S +
NOP	0
EQL	1
MBS	2
WNDOW SCALE	3
TI MESTAMP	4
SACK- PERM TTED	5
SACK	6
CGeneric options	7-15
S S +

Some TCP options are used nore frequently than others. To sinplify
their conpression, a part of the itemtable is reserved for these
option types, as shown on the table above. Both the conpressor and
t he deconpressor MJST use these nappi ngs between item and i ndexes to
(de) conpress TCP options when using |ist conpression

It is expected that the option types for which an index is reserved
inthe itemtable will only appear once in a list. However, if an
option type is detected twice in the same options list and if both
options have a different content, the conpressor should conpress the
second occurrence of the option type by mapping it to a generic
conpressed option. Oherwise, if the options have the exact sane
content, the conpressor can still use the sanme table index for both.

The NOP option

The NOP option can appear nore than once in the list. However,
since its value is always the sanme, no context information needs
to be transmitted. Miltiple NOP options can thus be napped to the
sane index. Since the NOP option does not have any content when
conpressed as a "_list_itent, it will never be present in the item
list. For consistency, the conpressor should still establish an
entry in the list by setting the presence bit, as done for the
other type of options.

Li st conpression always preserves the original order of each item
in the deconpressed list, whether or not the itemis present in
the conpressed " _list_itent or if nultiple itenms of the sane type
can be mapped to the sane index, as for the NOP option

Pelletier, et al. St andards Track [Page 29]

RFC 6846 ROHC- TCP January 2013

The ECL option

The size of the conpressed format for the EOQOL option can be |arger
than one octet, and it is defined so that it includes the option
paddi ng. This is because the EOL should term nate the parsing of
the options, but it can also be foll owed by padding octets that
all have the value zero

The Generic option

The Generic option can be used to conpress any type of TCP option
that does not have a reserved index in the itemtable.

6.3.5. Conpressed Lists in Dynam c Chain

A conmpressed list for TCP options that is part of the dynam c chain
(e.g., in IR or IR DYN packets) nust have all its list itenms present,
i.e., all X-bits in the Xl list MJST be set.

6.3.6. Irregular Chain Items for TCP Options

The " list_itent represents the option inside the conpressed item
list, and the " _irregular” format is used for the option fields that
are expected to change with each packet. Wen an itemof the
specified type is present in the current context, these irregul ar
fields are present in each conpressed packet, as part of the
irregular chain. Since many of the TCP option types are not expected
to change for the duration of a flow, many of the " _irregular”
formats are enpty.

The irregular chain for TCP options is structured anal ogously to the
structure of the TCP options in the unconpressed packet. |If a
conpressed list is present in the conpressed packet, then the
irregular chain for TCP options nmust not contain irregular itens for
the list items that are transmitted inside the conpressed list (i.e.
itens in the list that have the X-bit set inits XlI). The itens that
are not present in the conpressed list, but are present in the
unconpressed list, nust have their respective irregular itens present
in the irregular chain.

6.3.7. Replication of TCP Options
The entire table of TCP options itens is always replicated when using
the IR-CR packet. In the IR CR packet, the list of options for the

new flowis also transmitted as a conpressed list in the IRCR
packet .

Pelletier, et al. St andards Track [Page 30]

RFC 6846 ROHC- TCP January 2013

6.4. Profile-Specific Encodi ng Methods

This section defines encodi ng nethods that are specific to this
profile. These methods are used in the formal definition of the
packet formats in Section 8.

6.4.1. inferred_ip_v4 header_ checksum

Thi s encodi ng nethod conpresses the Header Checksumfield of the |Pv4
header. This checksumis defined in [RFCO791] as foll ows:

Header Checksum 16 bits

A checksum on t he header only. Since sone header fields change
(e.g., time to live), this is reconputed and verified at each
point that the internet header is processed.

The checksumalgorithmis:

The checksumfield is the 16-bit one’'s conpl enent of the one’s
conpl enent sum of all 16-bit words in the header. For purposes
of computing the checksum the value of the checksumfield is
zero.

As descri bed above, the header checksum protects individual hops from
processing a corrupted header. Wen alnost all |P header information
is conpressed away, and when deconpression is verified by a CRC
comput ed over the original header for every conpressed packet, there
is no point in having this additional checksum instead, it can be
reconputed at the deconpressor side

The "inferred_i p_v4_header_checksunt encodi ng met hod t hus conpresses
the | Pv4 header checksum down to a size of zero bits. Using this
encodi ng net hod, the deconpressor infers the value of this field
usi ng the conputation above.

This encoding nethod inplicitly assumes that the conpressor will not
process a corrupted header; otherw se, it cannot guarantee that the
checksum as reconmputed by the deconpressor will be bitwi se identica
to its original value before conpression

6.4.2. inferred_m ne_header_ checksum

Thi s encodi ng nethod conpresses the nininal encapsul ati on header
checksum This checksumis defined in [RFC2004] as foll ows:

Pelletier, et al. St andards Track [Page 31]

RFC 6846 ROHC- TCP January 2013

Header Checksum

The 16-bit one’s conpl enent of the one’s conplenent sum of all
16