Stream: Internet Engineering Task Force (IETF)

RFC: 8915

Category: Standards Track

Published: September 2020

ISSN: 2070-1721

Authors: D.Franke D.Sibold K. Teichel M. Dansarie R.Sundblad
Akamai PTB PTB Netnod

RFC 8915
Network Time Security for the Network Time
Protocol

Abstract

This memo specifies Network Time Security (NTS), a mechanism for using Transport Layer
Security (TLS) and Authenticated Encryption with Associated Data (AEAD) to provide
cryptographic security for the client-server mode of the Network Time Protocol (NTP).

NTS is structured as a suite of two loosely coupled sub-protocols. The first (NTS Key
Establishment (NTS-KE)) handles initial authentication and key establishment over TLS. The
second (NTS Extension Fields for NTPv4) handles encryption and authentication during NTP time
synchronization via extension fields in the NTP packets, and holds all required state only on the
client via opaque cookies.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at https://www.rfc-editor.org/info/rfc8915.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Franke, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8915
https://www.rfc-editor.org/info/rfc8915

RFC 8915 Network Time Security for NTP September 2020

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Objectives
1.2. Terms and Abbreviations

1.3. Protocol Overview

2. Requirements Language
3. TLS Profile for Network Time Security
4. The NTS Key Establishment Protocol
4.1. NTS-KE Record Types
4.1.1. End of Message
4.1.2. NTS Next Protocol Negotiation
4.1.3. Error
4.1.4. Warning
4.1.5. AEAD Algorithm Negotiation
4.1.6. New Cookie for NTPv4
4.1.7. NTPv4 Server Negotiation
4.1.8. NTPv4 Port Negotiation

4.2. Retry Intervals

4.3. Key Extraction (Generally)

5. NTS Extension Fields for NTPv4
5.1. Key Extraction (for NTPv4)
5.2. Packet Structure Overview
5.3. The Unique Identifier Extension Field
5.4. The NTS Cookie Extension Field
5.5. The NTS Cookie Placeholder Extension Field

Franke, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

RFC 8915 Network Time Security for NTP September 2020

5.6. The NTS Authenticator and Encrypted Extension Fields Extension Field

5.7. Protocol Details

6. Suggested Format for NTS Cookies
7. IANA Considerations
7.1. Service Name and Transport Protocol Port Number Registry
7.2. TLS Application-Layer Protocol Negotiation (ALPN) Protocol IDs Registry
7.3. TLS Exporter Labels Registry
7.4. NTP Kiss-o'-Death Codes Registry
7.5. NTP Extension Field Types Registry
7.6. Network Time Security Key Establishment Record Types Registry
7.7. Network Time Security Next Protocols Registry

7.8. Network Time Security Error and Warning Codes Registries

8. Security Considerations
8.1. Protected Modes
8.2. Cookie Encryption Key Compromise
8.3. Sensitivity to DDoS Attacks
8.4. Avoiding DDoS Amplification
8.5. Initial Verification of Server Certificates
8.6. Delay Attacks
8.7. NTS Stripping

9. Privacy Considerations
9.1. Unlinkability
9.2. Confidentiality

10. References
10.1. Normative References
10.2. Informative References
Acknowledgments

Authors' Addresses

Franke, et al. Standards Track Page 3

RFC 8915 Network Time Security for NTP September 2020

1. Introduction

This memo specifies Network Time Security (NTS), a cryptographic security mechanism for
network time synchronization. A complete specification is provided for application of NTS to the
client-server mode of the Network Time Protocol (NTP) [RFC5905].

1.1. Objectives

The objectives of NTS are as follows:

e Identity: Through the use of a X.509 public key infrastructure, implementations can
cryptographically establish the identity of the parties they are communicating with.

» Authentication: Implementations can cryptographically verify that any time synchronization
packets are authentic, i.e., that they were produced by an identified party and have not been
modified in transit.

* Confidentiality: Although basic time synchronization data is considered nonconfidential and
sent in the clear, NTS includes support for encrypting NTP extension fields.

* Replay prevention: Client implementations can detect when a received time synchronization
packet is a replay of a previous packet.

* Request-response consistency: Client implementations can verify that a time synchronization
packet received from a server was sent in response to a particular request from the client.

¢ Unlinkability: For mobile clients, NTS will not leak any information additional to NTP which
would permit a passive adversary to determine that two packets sent over different
networks came from the same client.

* Non-amplification: Implementations (especially server implementations) can avoid acting as
distributed denial-of-service (DDoS) amplifiers by never responding to a request with a
packet larger than the request packet.

* Scalability: Server implementations can serve large numbers of clients without having to
retain any client-specific state.

» Performance: NTS must not significantly degrade the quality of the time transfer. The
encryption and authentication used when actually transferring time should be lightweight
(see Section 5.7 of RFC 7384 [RFC7384]).

1.2. Terms and Abbreviations

AEAD Authenticated Encryption with Associated Data [RFC5116]

ALPN Application-Layer Protocol Negotiation [RFC7301]

C2S Client-to-server
DoS Denial-of-Service
DDoS Distributed Denial-of-Service

Franke, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc7384#section-5.7

RFC 8915 Network Time Security for NTP September 2020

EF Extension Field [RFC5905]

HKDF Hashed Message Authentication Code-based Key Derivation Function [RFC5869]

KoD Kiss-o0'-Death [RFC5905]
NTP Network Time Protocol [RFC5905]
NTS Network Time Security

NTS NAK NTS negative-acknowledgment
NTS-KE Network Time Security Key Establishment
S2C Server-to-client

TLS Transport Layer Security [RFC8446]

1.3. Protocol Overview

The Network Time Protocol includes many different operating modes to support various network
topologies (see Section 3 of RFC 5905 [RFC5905]). In addition to its best-known and most-widely-
used client-server mode, it also includes modes for synchronization between symmetric peers, a
control mode for server monitoring and administration, and a broadcast mode. These various
modes have differing and partly contradictory requirements for security and performance.
Symmetric and control modes demand mutual authentication and mutual replay protection.
Additionally, for certain message types, the control mode may require confidentiality as well as
authentication. Client-server mode places more stringent requirements on resource utilization
than other modes because servers may have a vast number of clients and be unable to afford to
maintain per-client state. However, client-server mode also has more relaxed security needs
because only the client requires replay protection: it is harmless for stateless servers to process
replayed packets. The security demands of symmetric and control modes, on the other hand, are
in conflict with the resource-utilization demands of client-server mode: any scheme that
provides replay protection inherently involves maintaining some state to keep track of which
messages have already been seen.

This memo specifies NTS exclusively for the client-server mode of NTP. To this end, NTS is
structured as a suite of two protocols:

The "NTS Extension Fields for NTPv4" define a collection of NTP extension fields for
cryptographically securing NTPv4 using previously established key material. They are
suitable for securing client-server mode because the server can implement them without
retaining per-client state. All state is kept by the client and provided to the server in the form
of an encrypted cookie supplied with each request. On the other hand, the NTS Extension
Fields are suitable only for client-server mode because only the client, and not the server, is
protected from replay.

The "NTS Key Establishment" protocol (NTS-KE) is a mechanism for establishing key material
for use with the NTS Extension Fields for NTPv4. It uses TLS to establish keys, to provide the

Franke, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc5905#section-3

RFC 8915 Network Time Security for NTP September 2020

client with an initial supply of cookies, and to negotiate some additional protocol options.
After this, the TLS channel is closed with no per-client state remaining on the server side.

The typical protocol flow is as follows: The client connects to an NTS-KE server on the NTS TCP
port and the two parties perform a TLS handshake. Via the TLS channel, the parties negotiate
some additional protocol parameters, and the server sends the client a supply of cookies along
with an address and port of an NTP server for which the cookies are valid. The parties use TLS
key export [RFC5705] to extract key material, which will be used in the next phase of the
protocol. This negotiation takes only a single round trip, after which the server closes the
connection and discards all associated state. At this point, the NTS-KE phase of the protocol is
complete. Ideally, the client never needs to connect to the NTS-KE server again.

Time synchronization proceeds with the indicated NTP server. The client sends the server an
NTP client packet that includes several extension fields. Included among these fields are a cookie
(previously provided by the key establishment server) and an authentication tag, computed
using key material extracted from the NTS-KE handshake. The NTP server uses the cookie to
recover this key material and send back an authenticated response. The response includes a
fresh, encrypted cookie that the client then sends back in the clear in a subsequent request. This
constant refreshing of cookies is necessary in order to achieve NTS's unlinkability goal.

Figure 1 provides an overview of the high-level interaction between the client, the NTS-KE
server, and the NTP server. Note that the cookies' data format and the exchange of secrets
between NTS-KE and NTP servers are not part of this specification and are implementation
dependent. However, a suggested format for NTS cookies is provided in Section 6.

Franke, et al. Standards Track Page 6

RFC 8915 Network Time Security for NTP September 2020

Fom e +
I
+-> | NTP Server 1 |
I I I
Shared cookie | e e +
PooCoosoosooooos + encryption parameters | Pocooooocoocoo0 +
| | (Implementation dependent) | |
| MTS={E SBFYEF | S=crorrorcerroroocsoososcoonoos +-> | NTP Server 2 |
I I I I I
Fomm e + | Fom e +
" I
I I
| 1. Negotiate parameters, | .
| receive initial cookie | to— - +
| supply, generate AEAD keys, |
| and receive NTP server IP +-> | NTP Server N |
| addresses using "NTS Key | |
| Establishment" protocol. Fommm - +
| A
I I
I oo + I
I I I I
it > | Client | <-—----—---————-——————————— +
| | 2. Perform authenticated
R + time synchronization

and generate new
cookies using "NTS
Extension Fields for
NTPv4" .

Figure 1: Overview of High-Level Interactions in NTS

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. TLS Profile for Network Time Security

Network Time Security makes use of TLS for NTS key establishment.

Since the NTS protocol is new as of this publication, no backward-compatibility concerns exist to
justify using obsolete, insecure, or otherwise broken TLS features or versions. Implementations
MUST conform with RFC 7525 [RFC7525] or with a later revision of BCP 195.

Implementations MUST NOT negotiate TLS versions earlier than 1.3 [RFC8446] and MAY refuse to
negotiate any TLS version that has been superseded by a later supported version.

Franke, et al. Standards Track Page 7

RFC 8915 Network Time Security for NTP September 2020

Use of the Application-Layer Protocol Negotiation Extension [RFC7301] is integral to NTS, and
support for it is REQUIRED for interoperability.

Implementations MUST follow the rules in RFC 5280 [RFC5280] and RFC 6125 [RFC6125] for the
representation and verification of the application's service identity. When NTS-KE service
discovery (out of scope for this document) produces one or more host names, use of the DNS-ID
identifier type [RFC6125] is RECOMMENDED; specifications for service discovery mechanisms can
provide additional guidance for certificate validation based on the results of discovery. Section
8.5 of this memo discusses particular considerations for certificate verification in the context of
NTS.

4. The NTS Key Establishment Protocol

The NTS key establishment protocol is conducted via TCP port 4460. The two endpoints carry out
a TLS handshake in conformance with Section 3, with the client offering (via an ALPN extension
[RFC7301]), and the server accepting, an application-layer protocol of "ntske/1". Immediately
following a successful handshake, the client SHALL send a single request as Application Data
encapsulated in the TLS-protected channel. Then, the server SHALL send a single response. After
sending their respective request and response, the client and server SHALL send TLS
"close_notify" alerts in accordance with Section 6.1 of RFC 8446 [RFC8446].

The client's request and the server's response each SHALL consist of a sequence of records
formatted according to Figure 2. The request and a non-error response each SHALL include
exactly one NTS Next Protocol Negotiation record. The sequence SHALL be terminated by a "End
of Message" record. The requirement that all NTS-KE messages be terminated by an End of
Message record makes them self-delimiting.

Clients and servers MAY enforce length limits on requests and responses; however, servers MUST
accept requests of at least 1024 octets, and clients SHOULD accept responses of at least 65536
octets.

0 1 2 3
©0123456789012345678908123456789201
Fot-t-t-t—t—t—t—t-t-t-t-t—F—t -ttt -F-F-t—F -ttt -F-F-F—F—+-+-+
|C| Record Type | Body Length |
+-+-+-+-+-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-F-F-+-F-+-+-+-+-+

Record Body
tot—t—t-t—t-t-t—t-t—F -ttt -ttt -F-F—t-F-F -ttt -ttt -F-F—t-+-+

Figure 2: NTS-KE Record Format

The fields of an NTS-KE record are defined as follows:

Franke, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8446#section-6.1

RFC 8915 Network Time Security for NTP September 2020

C (Critical Bit): Determines the disposition of unrecognized Record Types. Implementations
which receive a record with an unrecognized Record Type MUST ignore the record if the
Critical Bit is 0 and MUST treat it as an error if the Critical Bit is 1 (see Section 4.1.3).

Record Type Number: A 15-bit integer in network byte order. The semantics of Record Types
0-7 are specified in this memo. Additional type numbers SHALL be tracked through the IANA
"Network Time Security Key Establishment Record Types" registry.

Body Length: The length of the Record Body field, in octets, as a 16-bit integer in network byte
order. Record bodies MAY have any representable length and need not be aligned to a word
boundary.

Record Body: The syntax and semantics of this field SHALL be determined by the Record Type.

For clarity regarding bit-endianness: the Critical Bit is the most significant bit of the first octet. In
the C programming language, given a network buffer 'unsigned char b[]' containing an NTS-KE
record, the critical bit is 'b[0] >> 7' while the record type is '((b[0] & 0x7f) << 8) + b[1]".

Note that, although the Type-Length-Body format of an NTS-KE record is similar to that of an NTP
extension field, the semantics of the length field differ. While the length subfield of an NTP
extension field gives the length of the entire extension field including the type and length
subfields, the length field of an NTS-KE record gives just the length of the body.

Figure 3 provides a schematic overview of the key establishment. It displays the protocol steps to
be performed by the NTS client and server and Record Types to be exchanged.

Franke, et al. Standards Track Page 9

RFC 8915 Network Time Security for NTP September 2020

- Verify client request message. |
- Extract TLS key material. |
- Generate KE response message. |
- Include Record Types:

o NTS Next Protocol Negotiation |

AEAD Algorithm Negotiation |

<NTPv4 Server Negotiation> |
<NTPv4 Port Negotiation> |
New Cookie for NTPv4 |
<New Cookie for NTPv4> |
End of Message |
Fomm - e +

I
I
SAREF Socccssssss t--mm - t----- tommmmmmm e =
A \
/ \
/ TLS application \
/ data \
/ \
/ v
Client ----- Mo cooooooooooomoosoooonoononoonoos o >
| |
| |
| |

T e + 4------ e +
|- Generate KE request message. | |- Verify server response|
| - Include Record Types: | | message.

| o NTS Next Protocol Negotiation | |- Extract cookie(s). |
| o AEAD Algorithm Negotiation | e +
| o <NTPv4 Server Negotiation> |

| o <NTPv4 Port Negotiation> |

| o End of Message |

Figure 3: NTS Key Establishment Messages

4.1. NTS-KE Record Types
The following NTS-KE Record Types are defined:

4.1.1. End of Message

The End of Message record has a Record Type number of 0 and a zero-length body. It MUST occur
exactly once as the final record of every NTS-KE request and response. The Critical Bit MUST be
set.

4.1.2. NTS Next Protocol Negotiation

The NTS Next Protocol Negotiation record has a Record Type number of 1. It MUST occur exactly
once in every NTS-KE request and response. Its body consists of a sequence of 16-bit unsigned
integers in network byte order. Each integer represents a Protocol ID from the IANA "Network
Time Security Next Protocols" registry (Section 7.7). The Critical Bit MUST be set.

Franke, et al. Standards Track Page 10

RFC 8915 Network Time Security for NTP September 2020

The Protocol IDs listed in the client's NTS Next Protocol Negotiation record denote those
protocols that the client wishes to speak using the key material established through this NTS-KE
session. Protocol IDs listed in the NTS-KE server's response MUST comprise a subset of those
listed in the request and denote those protocols that the NTP server is willing and able to speak
using the key material established through this NTS-KE session. The client MAY proceed with one
or more of them. The request MUST list at least one protocol, but the response MAY be empty.

4.1.3. Error

The Error record has a Record Type number of 2. Its body is exactly two octets long, consisting of
an unsigned 16-bit integer in network byte order, denoting an error code. The Critical Bit MUST
be set.

Clients MUST NOT include Error records in their request. If clients receive a server response that
includes an Error record, they MUST discard any key material negotiated during the initial TLS
exchange and MUST NOT proceed to the Next Protocol. Requirements for retry intervals are
described in Section 4.2.

The following error codes are defined:

Error code 0 means "Unrecognized Critical Record". The server MUST respond with this error
code if the request included a record that the server did not understand and that had its
Critical Bit set. The client SHOULD NOT retry its request without modification.

Error code 1 means "Bad Request". The server MUST respond with this error if the request is
not complete and syntactically well-formed, or, upon the expiration of an implementation-
defined timeout, it has not yet received such a request. The client SHOULD NOT retry its
request without modification.

Error code 2 means "Internal Server Error". The server MUST respond with this error if it is
unable to respond properly due to an internal condition. The client MAY retry its request.
4.1.4. Warning

The Warning record has a Record Type number of 3. Its body is exactly two octets long,
consisting of an unsigned 16-bit integer in network byte order, denoting a warning code. The
Critical Bit MUST be set.

Clients MUST NOT include Warning records in their request. If clients receive a server response
that includes a Warning record, they MAY discard any negotiated key material and abort without
proceeding to the Next Protocol. Unrecognized warning codes MUST be treated as errors.

This memo defines no warning codes.

4.1.5. AEAD Algorithm Negotiation

The AEAD Algorithm Negotiation record has a Record Type number of 4. Its body consists of a
sequence of unsigned 16-bit integers in network byte order, denoting Numeric Identifiers from
the IANA "AEAD Algorithms" registry [JANA-AEAD]. The Critical Bit MAY be set.

Franke, et al. Standards Track Page 11

RFC 8915 Network Time Security for NTP September 2020

If the NTS Next Protocol Negotiation record offers Protocol ID 0 (for NTPv4), then this record
MUST be included exactly once. Other protocols MAY require it as well.

When included in a request, this record denotes which AEAD algorithms the client is willing to
use to secure the Next Protocol, in decreasing preference order. When included in a response,
this record denotes which algorithm the server chooses to use. It is empty if the server supports
none of the algorithms offered. In requests, the list MUST include at least one algorithm. In
responses, it MUST include at most one. Honoring the client's preference order is OPTIONAL:
servers may select among any of the client's offered choices, even if they are able to support
some other algorithm that the client prefers more.

Server implementations of NTS Extension Fields for NTPv4 (Section 5) MUST support
AEAD_AES_SIV_CMAC_256 [RFC5297] (Numeric Identifier 15). That is, if the client includes
AEAD_AES_SIV_CMAC_256 in its AEAD Algorithm Negotiation record, and the server accepts
Protocol ID 0 (NTPv4) in its NTS Next Protocol Negotiation record, then the server's AEAD
Algorithm Negotiation record MUST NOT be empty.

4.1.6. New Cookie for NTPv4

The New Cookie for NTPv4 record has a Record Type number of 5. The contents of its body
SHALL be implementation-defined, and clients MUST NOT attempt to interpret them. See Section 6
for a suggested construction.

Clients MUST NOT send records of this type. Servers MUST send at least one record of this type,
and SHOULD send eight of them, if the Next Protocol Negotiation response record contains
Protocol ID 0 (NTPv4) and the AEAD Algorithm Negotiation response record is not empty. The
Critical Bit SHOULD NOT be set.

4.1.7. NTPv4 Server Negotiation

The NTPv4 Server Negotiation record has a Record Type number of 6. Its body consists of an
ASClII-encoded [RFC0020] string. The contents of the string SHALL be either an IPv4 address, an
IPv6 address, or a fully qualified domain name (FQDN). IPv4 addresses MUST be in dotted
decimal notation. IPv6 addresses MUST conform to the "Text Representation of Addresses" as
specified in RFC 4291 [RFC4291] and MUST NOT include zone identifiers [REC6874]. If a label
contains at least one non-ASCII character, it is an internationalized domain name, and an A-
LABEL MUST be used as defined in Section 2.3.2.1 of RFC 5890 [RFC5890]. If the record contains a
domain name, the recipient MUST treat it as a FQDN, e.g., by making sure it ends with a dot.

When NTPv4 is negotiated as a Next Protocol and this record is sent by the server, the body
specifies the hostname or IP address of the NTPv4 server with which the client should associate
and that will accept the supplied cookies. If no record of this type is sent, the client SHALL
interpret this as a directive to associate with an NTPv4 server at the same IP address as the NTS-
KE server. Servers MUST NOT send more than one record of this type.

Franke, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc5890#section-2.3.2.1

RFC 8915 Network Time Security for NTP September 2020

When this record is sent by the client, it indicates that the client wishes to associate with the
specified NTP server. The NTS-KE server MAY incorporate this request when deciding which
NTPv4 Server Negotiation records to respond with, but honoring the client's preference is
OPTIONAL. The client MUST NOT send more than one record of this type.

If the client has sent a record of this type, the NTS-KE server SHOULD reply with the same record
if it is valid and the server is able to supply cookies for it. If the client has not sent any record of
this type, the NTS-KE server SHOULD respond with either an NTP server address in the same
family as the NTS-KE session or a FQDN that can be resolved to an address in that family, if such
alternatives are available.

Servers MAY set the Critical Bit on records of this type; clients SHOULD NOT.

4.1.8. NTPv4 Port Negotiation

The NTPv4 Port Negotiation record has a Record Type number of 7. Its body consists of a 16-bit
unsigned integer in network byte order, denoting a UDP port number.

When NTPv4 is negotiated as a Next Protocol, and this record is sent by the server, the body
specifies the port number of the NTPv4 server with which the client should associate and that
will accept the supplied cookies. If no record of this type is sent, the client SHALL assume a
default of 123 (the registered port number for NTP).

When this record is sent by the client in conjunction with a NTPv4 Server Negotiation record, it
indicates that the client wishes to associate with the NTP server at the specified port. The NTS-KE
server MAY incorporate this request when deciding what NTPv4 Server Negotiation and NTPv4
Port Negotiation records to respond with, but honoring the client's preference is OPTIONAL.

Servers MAY set the Critical Bit on records of this type; clients SHOULD NOT.

4.2. Retry Intervals

A mechanism for not unnecessarily overloading the NTS-KE server is REQUIRED when retrying
the key establishment process due to protocol, communication, or other errors. The exact
workings of this will be dependent on the application and operational experience gathered over
time. Until such experience is available, this memo provides the following suggestion.

Clients SHOULD use exponential backoff, with an initial and minimum retry interval of 10
seconds, a maximum retry interval of 5 days, and a base of 1.5. Thus, the minimum interval in
seconds, 't', for the nth retry is calculated with the following:

t =min(10 * 1.5™1, 432000).

Clients MUST NOT reset the retry interval until they have performed a successful key
establishment with the NTS-KE server, followed by a successful use of the negotiated Next
Protocol with the keys and data established during that transaction.

Franke, et al. Standards Track Page 13

RFC 8915 Network Time Security for NTP September 2020

4.3. Key Extraction (Generally)

Following a successful run of the NTS-KE protocol, key material SHALL be extracted using the
HMAC-based Extract-and-Expand Key Derivation Function (HKDF) [RFC5869] in accordance with
Section 7.5 of RFC 8446 [RFC8446]. Inputs to the exporter function are to be constructed in a
manner specific to the negotiated Next Protocol. However, all protocols that utilize NTS-KE MUST
conform to the following two rules:

The disambiguating label string [RFC5705] MUST be "EXPORTER-network-time-security".

The per-association context value [RFC5705] MUST be provided and MUST begin with the
two-octet Protocol ID that was negotiated as a Next Protocol.

5. NTS Extension Fields for NTPv4

5.1. Key Extraction (for NTPv4)

Following a successful run of the NTS-KE protocol wherein Protocol ID 0 (NTPv4) is selected as a
Next Protocol, two AEAD keys SHALL be extracted: a client-to-server (C2S) key and a server-to-
client (S2C) key. These keys SHALL be computed with the HKDF defined in Section 7.5 of RFC 8446
[RFC8446] using the following inputs:

The disambiguating label string [RFC5705] SHALL be "EXPORTER-network-time-security".

The per-association context value [REC5705] SHALL consist of the following five octets:

o The first two octets SHALL be zero (the Protocol ID for NTPv4).

> The next two octets SHALL be the Numeric Identifier of the negotiated AEAD algorithm in
network byte order.

o The final octet SHALL be 0x00 for the C2S key and 0x01 for the S2C key.
Implementations wishing to derive additional keys for private or experimental use MUST NOT do
so by extending the above-specified syntax for per-association context values. Instead, they
SHOULD use their own disambiguating label string. Note that RFC 5705 [RFC5705] provides that

disambiguating label strings beginning with "EXPERIMENTAL" MAY be used without IANA
registration.

5.2. Packet Structure Overview
In general, an NTS-protected NTPv4 packet consists of the following:

The usual 48-octet NTP header, which is authenticated but not encrypted.
Some extension fields, which are authenticated but not encrypted.

An extension field that contains AEAD output (i.e., an authentication tag and possible
ciphertext). The corresponding plaintext, if non-empty, consists of some extension fields that
benefit from both encryption and authentication.

Franke, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc8446#section-7.5
https://www.rfc-editor.org/rfc/rfc8446#section-7.5

RFC 8915 Network Time Security for NTP September 2020

Possibly, some additional extension fields that are neither encrypted nor authenticated. In
general, these are discarded by the receiver.

Always included among the authenticated or authenticated-and-encrypted extension fields are a
cookie extension field and a unique identifier extension field, as described in Section 5.7. The
purpose of the cookie extension field is to enable the server to offload storage of session state
onto the client. The purpose of the unique identifier extension field is to protect the client from
replay attacks.

5.3. The Unique Identifier Extension Field

The Unique Identifier extension field provides the client with a cryptographically strong means
of detecting replayed packets. It has a Field Type of 0x0104. When the extension field is included
in a client packet (mode 3), its body SHALL consist of a string of octets generated by a
cryptographically secure random number generator [RFC4086]. The string MUST be at least 32
octets long. When the extension field is included in a server packet (mode 4), its body SHALL
contain the same octet string as was provided in the client packet to which the server is
responding. All server packets generated by NTS-implementing servers in response to client
packets containing this extension field MUST also contain this field with the same content as in
the client's request. The field's use in modes other than client-server is not defined.

This extension field MAY also be used standalone, without NTS, in which case it provides the
client with a means of detecting spoofed packets from off-path attackers. Historically, NTP's
origin timestamp field has played both these roles, but this is suboptimal for cryptographic
purposes because it is only 64 bits long, and depending on implementation details, most of those
bits may be predictable. In contrast, the Unique Identifier extension field enables a degree of
unpredictability and collision resistance more consistent with cryptographic best practice.

5.4. The NTS Cookie Extension Field

The NTS Cookie extension field has a Field Type of 0x0204. Its purpose is to carry information
that enables the server to recompute keys and other session state without having to store any
per-client state. The contents of its body SHALL be implementation-defined, and clients MUST NOT
attempt to interpret them. See Section 6 for a suggested construction. The NTS Cookie extension
field MUST NOT be included in NTP packets whose mode is other than 3 (client) or 4 (server).

5.5. The NTS Cookie Placeholder Extension Field

The NTS Cookie Placeholder extension field has a Field Type of 0x0304. When this extension field
is included in a client packet (mode 3), it communicates to the server that the client wishes it to
send additional cookies in its response. This extension field MUST NOT be included in NTP
packets whose mode is other than 3.

Whenever an NTS Cookie Placeholder extension field is present, it MUST be accompanied by an
NTS Cookie extension field. The body length of the NTS Cookie Placeholder extension field MUST
be the same as the body length of the NTS Cookie extension field. This length requirement serves
to ensure that the response will not be larger than the request, in order to improve timekeeping

Franke, et al. Standards Track Page 15

RFC 8915 Network Time Security for NTP September 2020

precision and prevent DDoS amplification. The contents of the NTS Cookie Placeholder extension
field's body SHOULD be all zeros and, aside from checking its length, MUST be ignored by the
server.

5.6. The NTS Authenticator and Encrypted Extension Fields Extension Field

The NTS Authenticator and Encrypted Extension Fields extension field is the central
cryptographic element of an NTS-protected NTP packet. Its Field Type is 0x0404. It SHALL be
formatted according to Figure 4 and include the following fields:

Nonce Length: Two octets in network byte order, giving the length of the Nonce field, excluding
any padding, interpreted as an unsigned integer.

Ciphertext Length: Two octets in network byte order, giving the length of the Ciphertext field,
excluding any padding, interpreted as an unsigned integer.

Nonce: A nonce as required by the negotiated AEAD algorithm. The end of the field is zero-
padded to a word (four octets) boundary.

Ciphertext: The output of the negotiated AEAD algorithm. The structure of this field is
determined by the negotiated algorithm, but it typically contains an authentication tag in
addition to the actual ciphertext. The end of the field is zero-padded to a word (four octets)
boundary.

Additional Padding: Clients that use a nonce length shorter than the maximum allowed by the
negotiated AEAD algorithm may be required to include additional zero-padding. The
necessary length of this field is specified below.

Franke, et al. Standards Track Page 16

RFC 8915 Network Time Security for NTP September 2020

0 1 2 3
©0123456789012345678908123456789201
Fot-t-t-t—t—t—t-t-t-t-t-t—F—t -ttt -ttt -ttt -F-t-F—F—+—+-+

| Nonce Length | Ciphertext Length
t-t-t-t-t—t—t—t-t-t-t-t-t—F—t—t-t-t-t-t-t—F—F -ttt -F-t-t—F—F-+-+
I I
Nonce, including up to 3 octets padding
I
-ttt —t-t-t-t-t-t—t—t—t-t-t-t-t-t-t—F—F -ttt -ttt -F—F—F-+-+

¢ — 4 — .

Ciphertext, including up to 3 octets padding

—t—t—t—t—F—t—t-F-t-F—F—F—F—t—F-F-F -t —F—F—F-t-F-F -+t —F—F—F-+-+-+

¢ — 4 — .

Additional Padding

+-t-t-t-t-t-t-t-t—t—F—F—F—F—F—F—F—F -ttt -t -F-F-F-F-F-F-F-F-+-+-+
Figure 4: NTS Authenticator and Encrypted Extension Fields Extension Field Format

The Ciphertext field SHALL be formed by providing the following inputs to the negotiated AEAD
algorithm:

K: For packets sent from the client to the server, the C2S key SHALL be used. For packets sent
from the server to the client, the S2C key SHALL be used.

A: The associated data SHALL consist of the portion of the NTP packet beginning from the start
of the NTP header and ending at the end of the last extension field that precedes the NTS
Authenticator and Encrypted Extension Fields extension field.

P: The plaintext SHALL consist of all (if any) NTP extension fields to be encrypted; if multiple
extension fields are present, they SHALL be joined by concatenation. Each such field SHALL
be formatted in accordance with RFC 7822 [RFC7822], except that, contrary to the RFC 7822
requirement that fields have a minimum length of 16 or 28 octets, encrypted extension fields
MAY be arbitrarily short (but still MUST be a multiple of 4 octets in length).

N: The nonce SHALL be formed however required by the negotiated AEAD algorithm.

The purpose of the Additional Padding field is to ensure that servers can always choose a nonce
whose length is adequate to ensure its uniqueness, even if the client chooses a shorter one, and
still ensure that the overall length of the server's response packet does not exceed the length of
the request. For mode 4 (server) packets, no Additional Padding field is ever required. For mode 3
(client) packets, the length of the Additional Padding field SHALL be computed as follows. Let
'N_LEN' be the padded length of the Nonce field. Let 'N_MAX' be, as specified by RFC 5116
[RFC5116], the maximum permitted nonce length for the negotiated AEAD algorithm. Let 'N_REQ'

Franke, et al. Standards Track Page 17

RFC 8915 Network Time Security for NTP September 2020

be the lesser of 16 and N_MAX, rounded up to the nearest multiple of 4. If N_LEN is greater than
or equal to N_REQ, then no Additional Padding field is required. Otherwise, the Additional
Padding field SHALL be at least N_REQ - N_LEN octets in length. Servers MUST enforce this
requirement by discarding any packet that does not conform to it.

Senders are always free to include more Additional Padding than mandated by the above
paragraph. Theoretically, it could be necessary to do so in order to bring the extension field to the
minimum length required by RFC 7822 [RFC7822]. This should never happen in practice because
any reasonable AEAD algorithm will have a nonce and an authenticator long enough to bring the
extension field to its required length already. Nonetheless, implementers are advised to explicitly
handle this case and ensure that the extension field they emit is of legal length.

The NTS Authenticator and Encrypted Extension Fields extension field MUST NOT be included in
NTP packets whose mode is other than 3 (client) or 4 (server).

5.7. Protocol Details

A client sending an NTS-protected request SHALL include the following extension fields as
displayed in Figure 5:

Exactly one Unique Identifier extension field that MUST be authenticated, MUST NOT be
encrypted, and whose contents MUST be the output of a cryptographically secure random
number generator [RFC4086].

Exactly one NTS Cookie extension field that MUST be authenticated and MUST NOT be
encrypted. The cookie MUST be one which has been previously provided to the client, either
from the key establishment server during the NTS-KE handshake or from the NTP server in
response to a previous NTS-protected NTP request.

Exactly one NTS Authenticator and Encrypted Extension Fields extension field, generated
using an AEAD algorithm and C2S key established through NTS-KE.

To protect the client's privacy, the client SHOULD avoid reusing a cookie. If the client does not
have any cookies that it has not already sent, it SHOULD initiate a rerun of the NTS-KE protocol.
The client MAY reuse cookies